Spectrocopie nucléaires : RMN (Résonance Magnétique Nucléaire) - Spectroscopie Mössbauer
logo_tutelle 
Spectrocopie nucléaires : RMN (Résonance Magnétique Nucléaire) - Spectroscopie Mössbauer

Une partie de l'équipe du LSDRM de l'IRAMIS !

RMN (Résonance Magnétique Nucléaire) :

Soumis à un champ magnétique, certains noyaux atomiques se comportent comme de minuscules boussoles qui s'orientent par rapport à celui-ci. L'énergie mise en jeu dans l'interaction entre le noyau atomique et le champ magnétique varie d'un atome à l'autre : le magnétisme nucléaire permet donc en principe d'analyser la matière.

Magnétisme nucléaire : un jeu collectif :
Prenons le cas d'un atome dont le spin nucléaire peut prendre deux valeurs : +1/2 ou -1/2. En l'absence de champ magnétique, les noyaux présents dans un échantillon de matière se répartissent sur ces deux états de spin en deux populations égales. Le magnétisme nucléaire provient de l'écart infime entre les populations de spin +1/2 et -1/2, lorqu'un champ magnétique est appliqué. La somme des moments individuels des noyaux représente le moment magnétique global de l'échantillon, équivalent à un aimant fictif qu'on peut assez bien décrire de manière classique.

 

Pour mesurer le moment magnétique nucléaire global d'un échantillon, on le plonge dans un champ magnétique continu très intense qui favorise une des populations (1). On perturbe ensuite ces populations de spin en appliquant un champ magnétique alternatif à haute fréquence (radiofréquence)  (2). L'énergie d'interaction est choisie de façon à coïncider exactement avec la différence d'énergie entre les deux états de spin. Le moment magnétique nucléaire est basculé dans un plan perpendiculaire au champ continu puis, entreprend un mouvement de rotation autour de l'axe défini par ce champ, à la même fréquence que le champ alternatif. C'est le phénomène de résonance magnétique nucléaire. L'aimant équivalent revient lentement à son état initial. (3). Ce mouvement de rotation induit un courant alternatif dans une bobine : c'est le signal détecté par RMN. (4)

Voir le dossier : RMN et IRM à l'IRAMIS (2006).   -    Format PDF

 

La Spectroscopie Mössbauer :

L'effet Mössbauer, découvert en 1958 par R. Mössbauer, est la possibilité d'émission puis absorption sans recul d'un photon γ par des noyaux de même nature dans un réseau cristallin.  Cette technique est principalement connue pour l'étude du fer mais est également appliquable à toute espèce chimique présentant un spin nucléaire non nul.

L'échantillon est excité par un rayonnement gamma (photons) dont on fait varier l'énergie. Le détecteur est placé derrière l'échantillon pour enregistrer un spectre d'aborption aux énergies correspondant à l'énergie de transition nucléaire.

20070118RMN_DRECAMRevSCM.pdf

 
#118 - Màj : 25/06/2019
Voir aussi
L’interaction prédominante pour les spins nucléaires ½ est l’interaction dipolaire. En solide, celle-ci se traduit par des levées de dégénérescence des états énergétiques (couplages), proportionnelles aux distances inter-noyaux et à l’orientation des paires de noyaux par rapport au champ magnétique statique.
A new approach for glass NMR structural studies: in silico NMR spectrocopy approach
                DFT computation of NMR parameters with specific methods for solids, i.e., with periodic boundary conditions, have now become essential in solid-state NMR studies.[1,2] We are developing integrated methodologies  based on the combination of molecular dynamics simulations with NMR to help the detailed interpretation of experimental data for glasses.
The parahydrogen induced polarization (PHIP) method is based on the non-Boltzmann distribution of nuclear spin states following the hydrogenation of a substrate by parahydrogen. Absorptive and/or emissive NMR signals can be greatly enhanced, up to several orders of magnitude as compared to thermally polarized molecules. The research in this field is part of the expertise of LSDRM in its effort to increase NMR sensitivity.
1. HR-MAS of micro-scale specimens 1H HRMAS (High-Resolution Magic-Angle Spinning) NMR spectroscopy has found success in the study of metabolome in heterogeneous biospecimens, such as cells, tissues and orgamis, owing to its sample non-destructive nature and simplicity data aquisition.
L’interaction prédominante pour les spins nucléaires ½ est l’interaction dipolaire. En solide, celle-ci se traduit par des levées de dégénérescence des états énergétiques (couplages), proportionnelles aux distances inter-noyaux et à l’orientation des paires de noyaux par rapport au champ magnétique statique.
A new approach for glass NMR structural studies: in silico NMR spectrocopy approach
                DFT computation of NMR parameters with specific methods for solids, i.e., with periodic boundary conditions, have now become essential in solid-state NMR studies.[1,2] We are developing integrated methodologies  based on the combination of molecular dynamics simulations with NMR to help the detailed interpretation of experimental data for glasses.
The parahydrogen induced polarization (PHIP) method is based on the non-Boltzmann distribution of nuclear spin states following the hydrogenation of a substrate by parahydrogen. Absorptive and/or emissive NMR signals can be greatly enhanced, up to several orders of magnitude as compared to thermally polarized molecules. The research in this field is part of the expertise of LSDRM in its effort to increase NMR sensitivity.
1. HR-MAS of micro-scale specimens 1H HRMAS (High-Resolution Magic-Angle Spinning) NMR spectroscopy has found success in the study of metabolome in heterogeneous biospecimens, such as cells, tissues and orgamis, owing to its sample non-destructive nature and simplicity data aquisition.
Faits marquants scientifiques
28 novembre 2022
H. P. Khanh Ngo, E. Planes, C. Iojoiu, P. Soudant, A.-L. Rollet, P. Judeinstein The increasing need of portable electrical resources requires to develop post-Li batteries, in which redox reactions are then based on the different alkali or earth alkaline ions.
19 octobre 2012
En biologie et médecine, l'histopathologie est l'évaluation clinique des tissus, pour laquelle la RMN, technique incontournable, permet de déterminer la structure chimique des prélèvements. L’enjeu est ici de trouver une instrumentation et une méthode de RMN pour l'analyse automatisée de la composition métabolique des très petites quantités de matière biologique.
31 mars 2009
H. Desvaux, D. J.Y. Marion, G. Huber, P. Berthault
En résonance magnétique nucléaire dont l'application la plus connue est l'IRM, on mesure usuellement, aux bornes d'une bobine, la tension qui reflète l'induction créé par l'aimantation nucléaire mise préalablement en précession par une impulsion radiofréquence.
30 mai 2007
La faible sensibilité de la Résonance Magnétique nucléaire (RMN) rend très difficile l'étude de très petites quantités de matière, mais un groupe de recherche du DRECAM a pu repousser la limite de détection de la méthode.

 

Retour en haut