UMR 3685 NIMBE : Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie

NIMBE (Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie) est une nouvelle Unité Mixte de Recherche CEA‐CNRS (UMR 3685), spécialisée dans la conception, le façonnage et l'analyse de la matière de l’échelle du micron à l'échelle nanométrique, ainsi que la compréhension des mécanismes physicochimiques et leurs synergies à ces échelles.

L'ensemble de ces approches est appliqué en priorité aux grands enjeux sociétaux que sont les (nano)matériaux pour la gestion durable de l’énergie, le traitement de l'information, l’environnement, le diagnostic biomédical, le patrimoine…

NIMBE compte une centaine de chercheurs et techniciens permanents et s’appuie sur 7 laboratoires, tous membres d’un Labex :

L’unité fait partie des membres fondateurs de la Fédération de chimie physique du plateau de Saclay (FR3510 CNRS).

 

Ses principaux domaines d’activité sont :

  • Synthèse de nano-objets et matériaux nanostructurés, mise en forme et (nano)caractérisation et simulation: nanotubes de carbone et d'imogolite, nanoparticules par voies CVD et colloïdale, oxydes semiconducteurs poreux, copolymères à blocs…; mécanismes de nucléation, dynamique et réactivité dans les nanosystèmes; interfaces et fluides confinés; études sur les éléments légers dans les matériaux pour l'énergie; effets relativistes, équations intégrales.
  • Nanochimie pour l’électronique : Co-intégration; lithographie douce; électronique moléculaire; électronique souple imprimée; architectures innovantes.
  • Nanochimie pour la santé, l’environnement et le patrimoine : Capteurs et biocapteurs; imagerie RMN des interactions biologiques, notamment par des biosondes utilisant les gaz hyperpolarisés; auto-assemblage peptidique; vectorisation de médicaments; interactions entre vivant et environnement, toxicité, écotoxicité; archéométrie, patrimoine.
  • Nanochimie pour la gestion durable de l'énergie : Stockage électrochimique (batteries); stockage chimique (H2, CO2); conversion chimique-électrique (Piles à Combustible); conversion lumière-électrique (photovoltaïque); cycles de vie et durabilité des matériaux; nanochimie et autres filières énergétiques.
  • Instrumentation et modélisation en nanosciences : RMN portable; RMN ultrasensible par bruit de spin; détection de nanoparticules par spectrométrie de masse…

Presentation of the Division "Nanosciences and Innovation for Materials, Biomedicine and Energy ".

 
#2301 - Màj : 04/12/2019
Thèmes de recherche

Caractérisation de matériaux pour l'énergie / Characterization of materials for energy

Les différentes filières énergétiques, telles que l'énergie nucléaire ou encore les nouvelles technologies autour de l'hydrogène, vecteur énergétique, ou le photovoltaïque, demandent des matériaux adaptés, dont il faut tester la durabilité et la fiabilité.

Caractérisation de matériaux pour l'énergie / Characterization of materials for energy
Chimie de surface pour la biologie et la santé

Chimie de surface pour la biologie et la santé

Surfaces et biologie (voir le LICSEN...)

De la molécule au matériau moléculaire

Pour obtenir des objets fabriqués avec des caractéristiques et des spécificités originales, la fabrication de matériaux moléculaires est abordée en assemblant des briques élémentaires, comme des atomes, des molécules simples ou complexes ou des nanostructures (nanotubes de carbone et feuilles de graphène notamment) sur des supports métalliques, minéraux ou organiques, du verre...

De la molécule au matériau moléculaire
Électronique organique et moléculaire

Électronique organique et moléculaire

L'électronique organique et moléculaire vise à développer un traitement de l'information basé sur différents types de nano-objets (molécules, bio-molécules, nanoparticules, nanotubes de carbone, graphène...).

Interfaces, fluides complexes et microfluidique

Selon le domaine (énergies bas carbone, nanosciences pour les technologies de l'information et de la santé (RF-TIS), interaction rayonnement-matière) plusieurs équipes de l'IRAMIS sont impliquées sur cette thématique.

Interfaces, fluides complexes et microfluidique
Matériaux et irradiation

Matériaux et irradiation

Les recherches sur ce thème portent sur des études fondamentales du comportement sous irradiation d’une grande variété de matériaux utilisés notamment dans le contexte de l’électronucléaire (alliages métalliques, verres, céramiques, polymères).

Nanostructures et biomolécules : biomédecine et nanotoxicité / Nanostructures and biomolecules: biomedicine and nanotoxicity

Du fait de leur taille, les nanoparticules peuvent interagir avec les éléments du vivant, de la cellule à la molécule biologique. Ceci peut être mis à profit en médecine pour cibler des traitements, mais peut aussi présenter des effets indésirables, lors d'une forte exposition.

Nanostructures et biomolécules : biomédecine et nanotoxicité / Nanostructures and biomolecules: biomedicine and nanotoxicity
Physique et vivant / Physics and life

Physique et vivant / Physics and life

Trois " métiers " de l'IRAMIS trouvent une extension naturelle vers la biologie :  L'ingénierie moléculaire, où les études d'interactions coopératives de molécules en solution trouvent une suite directe dans l'étude des protéines et des différents modes d'assemblage de molécules d'intérêt biologique, L'étude de la matière à haute densité d'énergie, où les travaux sur la radiolyse et les interactions rayonnement-molécule, se transposent directement à des molécules comme l'ADN, L'étude de la matière ultra divisée, domaine dans lequel les matériaux nanostructurés, la nanophysique et la biologie convergent naturellement.

Transformations catalytiques pour l’énergie

L’IRAMIS développe de nouveaux catalyseurs avec l'objectif de développer le stockage des énergies alternatives sous forme chimique, ou la conversion du CO2, la transformation de la biomasse,  et le recyclage des déchets polymériques, trois  sources de molécules de base pour l’industrie chimique, aujourd’hui issues de produits pétroliers.

Transformations catalytiques pour l’énergie
Chimie quantique et simulations moléculaires

Chimie quantique et simulations moléculaires

La chimie théorique utilise les méthodes de la chimie quantique et du calcul ab initio, pour modéliser les structures des molécules. A travers des potentiels d'interaction modéles tirés de ces simulations, la dynamique moléculaire classique permet de décrire leur comportement des assemblages chimiques. Au NIMBE/LCMCE cette activité porte essentiellement sur des composés de lanthanides ou d'actinides.

Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Le développement des nanotechnologies s'appuie de plus en plus sur la logique d'assemblage spontané (auto-assemblage) ou non, des briques élémentaires que sont les nanoparticules.

Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.

Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.

L'incorporation de nano-objets ou la nanostructuration (à une échelle < 100 nm) au sein d'un matériau (solide cristallisé ou matière molle) permettent d'élaborer des "nanomatériaux" aux propriétés physico-chimiques nouvelles (réactivité chimique, propriétés mécanique ou électrique, biologique...).

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy

L’IRAMIS développe des matériaux nanostructurés pour les dispositifs photovoltaïques (PV) organique ou hybride : nanoparticules de silicium dopées ou non incluses dans différentes matrices, molécules spécifiques aux couches d’interface de cellules PV organiques, nanotubes de carbone fonctionnalisés par des chromophores, nanoparticules d’oxydes TiO2 dopées ou non en azote pour les cellules solaires à colorant cellules PV à base de Perovskite.

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

De nombreuses méthodes sont développées par les équipes de l'IRAMIS pour développer des capteurs chimiques sensibles, sélectifs  et efficaces. Pour ceci les nanotechnologies sont largement mises à contributions, avec l'utilisation de matériaux nanoporeux ou encore  d'objets fonctionnalisés. + microfluidique nano-objets  (effets plasmoniques, magnétiques, ...

Chimie environnementale et dépollution / Environmental chemistry and depollution

Les nanotechnologies offrent de nombreuses méthodes innovantes pour le piégeage de nombreux éléments polluants, chimiques, biologiques ou encore des métaux lourds.  Des méthodes de dépollution à l'aide de filtres à base de matériaux nanoporeux ou de fibres de carbone fonctionnalisées sont ainsi développées au LICSEN.

Chimie environnementale et dépollution / Environmental chemistry and depollution
Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage

Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage

Au delà des études visant à mieux comprendre et prédire l'altération des métaux anciens, l'équipe du LAPA utilise la science des matériaux et les méthodes de la chimie pour comprendre certains aspects des sociétés antiques en lien avec leur niveau technologique.

Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals

Plusieurs pays envisagent de développer une technologie de barrières multiples pour la sécurité du stockage des déchets nucléaires. Une question centrale est de savoir modéliser le comportement sur le long terme (soit 100 à 1000 ans) des matériaux utilisés, en particulier des containers, en acier faiblement allié, et de la matrice vitrifiée.

Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals
Synthèse et analyse en phase gazeuse  de nano-objets / Synthesis analysis in gas phase of nano-objects

Synthèse et analyse en phase gazeuse de nano-objets / Synthesis analysis in gas phase of nano-objects

La plupart des synthèses chimiques sont réalisées en milieu liquide. Pour l'élaboration de nanoparticules et les nanomatériaux, de multiples méthodes de synthèse en phase gaz se révèlent particulièremetn utiles et performantes .

Groupes de recherche / Laboratoires
Le Laboratoire "Archéomatériaux et Prévision de l’Altération" LAPA réunit des équipements et des chercheurs du CEA (NIMBE) et du CNRS (NIMBE UMR3685 et Laboratoire Métallurgies et Cultures de l'Institut de recherche sur les archéomatériaux IRAMAT UMR5060).
Laboratoire archéomatériaux et prévision de l'altération (LAPA)
Laboratoire d'Etude des Eléments Légers (LEEL)
Au sein du Laboratoire d'Etude des Eléments Légers (LEEL), les thèmes de recherche se concentrent autour du comportement des éléments légers dans les matériaux pour l'énergie. Les activités vont de la synthèse des matériaux à la caractérisation.
LICSEN was created in January 2014 by association within the NIMBE (UMR 3685) of  the former groups LCSI (SPCSI) and LEM (SPEC) see our publications here:   see our latest news here:   main industrial partners:     The LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences) combines chemists and physicists (12 CEA staff members, 2 university associates, ~12 Ph.
Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN)
Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (LCMCE)
LCMCE
Le Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (LCMCE) est spécialisé dans l’étude et la synthèse de composés moléculaires actifs, basés sur la chimie des métaux de transition, des éléments f et des éléments du groupe principal.
Responsable : Martine Mayne Le LEDNA (Laboratoire Edifices Nanométriques) comprend 18 permanents et une douzaine de doctorants, post-doctorants et CDD. Axée sur la recherche fondamentale en nanosciences, son expertise porte sur le développement, selon une approche bottom-up, de méthodes de synthèse et d’élaboration de nano-objets ou matériaux nanostructurés originaux.
Laboratoire Edifices Nanométriques (LEDNA)
Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)
LIONS    
Gold, emulsions, imogolites and microfluidics Le Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire  (LIONS) fait partie du NIMBE - UMR CEA-CNRS 3685. Ses activités se concentrent sur la compréhension et l'utilisation de l'auto-assemblage pour créer des architectures supramoléculaires.
LSDRM
     Le Laboratoire de Structure et Dynamique par Résonance Magnétique (LSDRM) fait partie du NIMBE - UMR CEA-CNRS 3685. Les recherches menées au LSDRM sont centrées sur le développement et l’utilisation de la Résonance Magnétique Nucléaire (RMN).
Laboratoire Structure et Dynamique par Résonance Magnétique (LSDRM)
Domaines Techniques
Spectrométrie de masse
La spectrométrie de masse est une technique instrumentale d’analyse reposant sur la séparation, l’identification et la quantification des éléments constitutifs d’un échantillon en fonction de leur masse. Ainsi les atomes, molécules ou aggrégats sont extraits sous forme d'ions, puis triés par un système dispersif : secteur de champ électrique ou magnétique, filtre quadripolaire ou temps de vol.

Analyse chimique en ligne au LEDNA

Si les surfaces possèdent intrinsèquement des propriétés intéressantes (propriétés optiques ou magnétiques, interface électronique, catalyse, fonction biologique, ...), des fonctions spécifiques peuvent être ajoutées par nanostructuration, ou en déposant un revêtement, ou encore par l'adsorption ou le greffage de molécules aux propriétés spécifiques.

Dépôt de films minces à partir de la voie liquide

Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites

Imprégnation et polissage

Mesures électrochimiques et électriques

Fonctionnalisation de surface / surface functionnalisation
Rayons X
Les rayons X, rayonnement électromagnétique au delà de l'ultra-violet lointain, couvrent une gamme de longueur d'onde autour du dixième de nanomètre. Cette distance est de l'ordre de la distance entre atomes dans la matière condensée. Ainsi les rayons X peuvent interagir avec ces atomes (diffraction) ou les électrons (diffusion).

Diffraction des rayons X : "D2 Phaser Brucker" au LEDNA

Patrick Berthault (NIMBE), Hervé Desvaux (IRAMIS/Dir), C. Fermon (SPEC)
Voir aussi le dossier complet (2008) : RMN à l'IRAMIS     La RMN est devenue une méthode alternative à la diffraction des rayons X pour l’étude des protéines et une méthode de choix dans la caractérisation des produits chimiques de synthèse et l’étude des matériaux désordonnés comme les verres, les polymères ou les bétons.

Instrumental setups @ LSDRM

Noble gas spin-exchange optical pumping (SEOP) setup in a van

La RMN à l 'IRAMIS
Microscopies électroniques TEM, MEB et LEEM/PEEM
Plusieurs types de microscopies électroniques sont disponibles à l'IRAMIS : - Microscopie à transmission (TEM : Transmission Electron Microscope), qui permet d'atteindre les plus hautes résolutions par diffusion/difffraction d'un faisceau d'électrons à travers un échantillon ultra-mince - Microscopie MEB et MEB-FEG (SPAM et SIS2M), ou microscopie à balayage, pour laquelle un faisceau d'électrons balaye la surface  de l'échantillon permettant d'obtenir une image de sa surface.

Microscopies électroniques au LEDNA

L'éclairement, par un rayonnement suffisamment énergétique, de la surface d'un matériau peut conduire à l'émission d'électrons dont la spectroscopie (étude en énergie) apporte des informations sur la composition de la surface étudiée.

Spectrométrie de photoélectrons X (XPS)

X-ray Photoelectron Spectroscopy (XPS)

Spectroscopies électroniques
Diffusion des Rayons X aux petits angles / Small Angle X-Rays Scattering (SAXS)
X-rays are used to investigate the structural properties of solids, liquids or gels. Photons interact with electrons, and provide information about the fluctuations of electronic densities in heterogeneous matter. A typical experimental set-up is shown on Figure : a monochromatic beam of incident wave vector is selected and falls on the sample. The scattered intensity is collected as a function of the so-called scattering angle 2 teta.

SWAXS Lab -Saclay : The SAXS/ GISAXS/ X-ray reflectomer beamline

La microscopie électrochimique (SECM, pour Scanning ElectroChemical Microscopy) est une technique électrochimique qui s’est développée à partir de la fin des années 90. Elle consiste à approcher une électrode de taille micrométrique d’une surface qu’on cherche à étudier.
Advanced Electrochemical Microscopy (SECM)
Elaboration d'un outil d'acquisition RTI open source (Reflectance Transformation Imaging)
Permanents impliqués : Mickaël Bouhier, Jean-Charles Méaudre. La Reflectance Transformation Imaging (RTI), ou imagerie de transformation par réflectivité, est une méthode d’imagerie basée sur la compilation de clichés dont la seule variable est l’orientation de la source lumineuse. Cette technique, dite 2.
L'électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux -entre autre pour l'énergie.
A l’IRAMIS,  l’électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus  (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux. Dans ce dernier volet, l’iramis a de nombreuses activités en électrocatalyse, dans les batteries, ou en biodétection.
Electrochimie
Microfluidique
La microfluidique est la science et la technologie des systèmes qui manipulent et transforment  de petites quantités de fluides (nanolitre à attolitre), en utilisant des canaux de quelques dizaines à plusieurs centaines de micromètres de dimension.  Depuis une décennie, la microfluidique est devenue un outil puissant  utilisé en recherche fondamentale et appliquée.
Voir aussi
Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN) :   Chemical Functionnalization of Surfaces ► Mechanisms of surface and nanomaterial modifications ► Application-oriented surface modifications : Graftfast®  Polymer metallization  the SEEP process Substitution of Cr(VI) Adhesion primers Antibacterial surfaces Surfaces for water depollution   Chemistry of Nanomaterials - bottom-up synthesis of graphene quantum dots (Nature Communications 2018)  - Fonctionnalization of carbon nanotubes, fullerenes, graphene - Synthesis and manipulation of graphene oxide (GO) - Graphene oxide (GO) local reduction and electrochemical functionnalization       Catalysis & Photo-catalysis for Energy ► Proton exchange membrane fuel cell and Electrolyzer : - Bio-inspired catalysts for hydrogen evolution and uptake, - Oxygen reduction reaction : Bio-inspired catalysts, N-enriched carbon Nanotubes, Non-noble metal catalysts ► PhotoElectroChemical cells :  - OPVs coupled to MoS3 hydrogen evolution catalyst (2013) - All solution-processed organic photocathodes (2016) ► Chemistry for batteries : new materials for Li-orga (2016)  and Li-S  (2018) batteries   Innovative Technologies for Biology and Healthcare ► Biosensors : - Optical, mechanical and electrochemical biosensors ► Surface chemistry for biology and healthcare : - Antibacterial surfaces, Photo-antimicrobial surfaces - Cell antiproliferative Surfaces for ophtalmic implants (with BioWintTech) - Surfaces chemistries for biochips and biosensors ► Drug delivery : - Irradiation induced drug delivery systems (Nano-objets polymères et hybrides sous irradiation) - Passive and porous drug delivery systems ► Micro/Millifluidics for biology and healthcare : - Lab-on-papers, Micro/Millifluidics by printing technologies   Organic & Molecular Electronics ► Organic Electronics :  - Perovskite-based solar cells : Halide ionic migration (ACS Energy Lett.
Laboratory 'Structure and Dynamics by Magnetic Resonance' :   Version française   The Laboratory 'Structure and Dynamics by Magnetic Resonance' (LSDRM) belongs to NIMBE, UMR CEA/CNRS 3685. The research axes are centered on the conception and the use of new NMR tools. Cutting edge methods and original approaches are proposed, from instrumental developments to molecular simulations.
Faits marquants scientifiques
28 septembre 2020
Inauguré en mars 2019, le laboratoire commun entre l'Université technologique Nanyang (NTU) de Singapour et le CEA affiche ses premières publications co-signées par des chercheurs de NTU, du CEA-Iramis (NIMBE/LICSEN), de l’ICSM et de la DES à Marcoule.
22 septembre 2020
La contamination bactérienne des surfaces est une problématique majeure dans de nombreux domaines, comme le médical ou l’agroalimentaire. La physiologie particulière des bactéries en surface et le développement de souches multi-résistantes sont deux facteurs qui réduisent l'efficacité des agents antimicrobiens.
12 juillet 2020
Les nanomédicaments sont considérés comme des thérapies prometteuses pour le traitement du cancer. Cependant, leur utilisation clinique reste encore limitée, dû en partie au fait que leur comportement biologique n'est pas encore vraiment élucidé.
12 juin 2020
Dans la production industrielle de méthanol (CH3OH), l'atome de carbone est usuellement issu du méthane (CH4), provenant pour l'essentiel de gisements de pétrole, gaz naturel et de schistes. Une nouvelle stratégie pour préparer le méthanol à partir de l'acide formique (HCOOH), lui-même issu du CO2, est présentée par une équipe du NIMBE/LCMCE.
14 avril 2020
Les études sur l'influence de rayonnements de toutes natures sur la matière biologique ont des enjeux à la fois pour la protection de la santé et pour les moyens thérapeutiques qu'elles peuvent offrir. Radiobiologie (effets de particules ionisantes) et photobiologie (effets de la lumière) contribuent chacun dans leur domaine.
07 janvier 2020
Formuler un substitut sanguin capable de transporter efficacement l’oxygène, sans toxicité biologique ou chimique, et dont la préparation serait peu coûteuse pour de très grandes quantités, est un graal qui remonte au XVIIème siècle [1].
18 septembre 2019
Des chercheurs de l’I2BC@Saclay et de l’UMR NIMBE, en collaboration avec le Laboratoire Léon Brillouin (LLB), ont analysé la structure de la couronne composée de deux protéines modèles adsorbées sur des nanoparticules de silice, en utilisant la technique de diffusion des neutrons aux petits angles.
11 septembre 2019
La réduction catalytique de composés organiques comportant des liaisons C=O suscite de nombreuses études en chimie fine pour former des molécules d’intérêt (éthers, alcools…), mais l’obtention sélective d’un produit de réaction est parfois difficile. Le choix du catalyseur et du réducteur joue ici un rôle essentiel.
23 avril 2019
Cette étude propose une méthode innovante de détection de protéines intracellulaires qui associe fluorescence et résonance magnétique, en combinant l’utilisation d’un fluorophore activable de très petite taille et l’exploitation de la grande sensibilité d’un traceur RMN non toxique, le xénon, dont le spin nucléaire est hyperpolarisé.
12 février 2019
​​Des chercheurs du SCBM (Institut Joliot) en collaboration avec l'équipe LCMCE du NIMBE (CEA/CNRS) ont mis au point une méthode de marquage au carbone 14 de molécules organiques d’intérêt thérapeutique, basée sur l’échange dynamique de dioxyde de carbone.
04 février 2019
L'émergence des véhicules électriques et du stockage des énergies renouvelables souligne le besoin d’augmenter la densité énergétique des batteries tout en diminuant leurs coûts et en améliorant leur sécurité.
07 janvier 2019
Une large collaboration de chercheurs a mis au point une nouvelle méthode permettant d’améliorer la capacité de stockage et de réduire le coût de production des batteries lithium-ion. La technologie proposée est basée sur l’irradiation des matériaux, de façon similaire à ce qui se fait par exemple dans les industries de traitement des aliments, des médicaments et des eaux usées.
16 novembre 2018
Diverses anomalies peuvent affecter le transport de l’oxygène par le sang et nécessiter une transfusion. Afin d’éviter les problèmes liés aux transfusions, comme la disponibilité ou les contaminations, la recherche de substituts sanguins est indispensable.
08 octobre 2018
Les nanomatériaux manufacturés sont largement utilisés pour de nombreuses applications. Certains d’entre eux peuvent être considérés comme dangereux pour la santé car ils pourraient provoquer des effets inflammatoires, respiratoires, cardiovasculaires ou neurologiques.
01 octobre 2018
Le CEA et le CNRS, et la Société CortecNet, avec le soutien de l’Agence nationale de la recherche (ANR), lancent leur laboratoire commun "Desir" (Détection efficace et sensible d'intermédiaires réactionnels par RMN). L'objectif est de développer les instruments permettant le suivi in situ de synthèses chimiques par RMN (Résonance magnétique nucléaire).
31 juillet 2018
De multiples recherches sont aujourd'hui orientées vers le développement de nouveaux colorants comme milieu actif de cellules solaires. Une famille de molécules, dites "push-pull", se révèle particulièrement intéressante car ces molécules associent un groupement donneur et un groupement accepteur d'électron.
19 juin 2018
En association avec le déploiement des sources d'énergies intermittentes (photovoltaïque, éolien...), il est indispensable de poursuivre les efforts de recherche pour améliorer les performances des batteries.
24 mai 2018
​Une collaboration entre une équipe de l'IRAMIS/NIMBE et deux équipes de l'I2BC@Saclay mettent en évidence l'affinité très forte de nanoparticules de silice pour des protéines de liaison de l'ARN présentant des séquences de base nucléique à motifs RGG (R = Adenine ou Guanine - Guanine-Guanine).
19 mars 2018
Dans un contexte de développement exponentiel des nanotechnologies, les nanomatériaux sont susceptibles de se disséminer dans l'environnement. Par ailleurs, les végétaux sont des éléments sensibles des écosystèmes car ils constituent un lien étroit entre les trois écosystèmes eau-sol-air, et se situent à la base de la chaine alimentaire.
14 mars 2018
Quelle quantité d’hydrogène recèle le noyau des planètes telluriques (telles que la Terre ou Mars) ? Pour tenter de répondre à cette difficile question, une collaboration impliquant l'équipe LEEL de l'UMR NIMBE a simulé en laboratoire la ségrégation d’un alliage riche en fer dans un environnement silicaté, en recréant des conditions de pression et température analogues à celles de la formation du noyau terrestre.
18 décembre 2017
Le CEA, le CNRS et la PME Protec Industrie lancent leur laboratoire commun Mestrel pour mettre au point un procédé de préparation de surface avant peinture, destiné en particulier à l’aéronautique et aux transports, sans produits chimiques dangereux pour la santé.  
16 décembre 2017
Caractérisés par la présence d’une liaison Si-H, les hydrosilanes sont des réducteurs chimiques très puissants. Ils permettent notamment de transférer en une seule étape un hydrure (H–) et un groupement chimique contenant Si, à un composé organique possédant une liaison double (C=C ou C=O) [1].
06 octobre 2017
La modélisation prédictive de la corrosion des aciers est un enjeu majeur dans plusieurs domaines de l'industrie (nucléaire, génie civil, etc…) et pour la conservation des métaux du patrimoine.
26 septembre 2017
La détection de biomarqueurs dans des fluides biologiques est une étape essentielle du diagnostic de plusieurs maladies et indispensable à leur traitement. Ces biomarqueurs sont souvent présents en quantité très faible nécessitant une étape de concentration.
06 juillet 2017
Ce que nous révèle la structure des biominéraux...
Chez les organismes vivants, les processus de biominéralisation régulent la croissance des tissus minéralisés, tels que les dents, les os, les coquilles… Ces procédés restent fascinants à étudier pour une meilleure compréhension du monde naturel qui nous entoure et de sa diversité, d'autant plus que ces recherches peuvent contribuer à l'élaboration de procédés biomimétiques pour la réalisation de nouveaux matériaux.
20 juin 2017
​Les pyrochlores sont des matériaux potentiellement utiles pour le confinement des déchets radioactifs ou pour les piles à combustibles. Dans Nature Scientific report, des chercheurs du CEA, du CNRS et leurs collègues australiens explorent l’organisation cristalline de ces matériaux pour mieux en connaitre leurs caractéristiques mécaniques et leur stabilité sous irradiation.  
10 juin 2017
La demande de dispositifs de stockage d'électricité performants pour l’électronique nomade ou l’automobile est en croissance rapide et nécessite une amélioration des performances des batteries (capacité, durée de vie, sécurité).
17 mai 2017
Des équipes du CEA Paris-Saclay, du CNRS du Mans, de l'Institut Fresnel et de l'Université Libanaise ont mis en œuvre une nouvelle technique de microscopie optique permettant d'observer les nanomatériaux bidimensionnels avec une résolution inégalée et de suivre en temps réel leur fonctionnalisation chimique.
18 février 2017
The chemical bonding in actinide compounds is usually analysed by inspecting the shape and the occupation of the orbitals or by calculating bond orders which are based on orbital overlap and occupation numbers. However, this may not give a definite answer because the choice of the partitioning method may strongly influence the result possibly leading to qualitatively different answers.
Publications HAL
Thèses
0 sujet IRAMIS/NIMBE

Dernière mise à jour : 09-10-2020


 

Stages
Analyse LC-HRMS/MS et RMN d’urines de souris marquées au C-13. Elucidation structurale de métabolites inconnus
LC-HRMS/MS and NMR analysis of C-13 labeled mouse urine. Structural elucidation of unknown metabolites

Spécialité

Chimie analytique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/01/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

HUBER Gaspard
+33 1 69 08 64 82

Résumé/Summary
La spectrométrie de masse à haute résolution (HRMS) et la résonance magnétique nucléaire (RMN) sont deux techniques complémentaires pour l'analyse de mélanges complexes en solution comme le métabolome. L'opportunité d'analyser, par ces deux techniques, des échantillons d'urine marquée au C-13, en complément d'autres échantillons non marqués obtenus dans des conditions similaires, doit permettre au cours de ce stage de gros progrès dans l'élucidation structurale de composés inconnus.
High resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) are two complementary techniques for the analysis of complex mixtures in solution such as the metabolome. During this trainee-ship, the opportunity to analyze, by these two techniques, urine samples labeled with C-13, in addition to other unlabeled samples obtained under similar conditions, should allow great progress in the structural elucidation of unknown compounds.
Sujet détaillé/Full description
Contexte et projet de recherche du M2

La métabolomique vise à caractériser l'ensemble des "petites molécules" (< 1500 Da) d'un échantillon biologique et repose principalement sur deux techniques analytiques : la spectrométrie de masse à haute résolution (HRMS) et la résonance magnétique nucléaire (RMN).[1,2] Malgré la très forte complémentarité de ces deux approches, elles sont encore très rarement utilisées de concert pour l’annotation du métabolome. Alors que l’analyse LC-HRMS d’un unique échantillon biologique complexe permet la détection de milliers de signaux à des concentrations allant jusqu’au nanomolaire, la RMN permet l’identification structurale des métabolites les plus abondants de cet échantillon. Cette dernière technique souffre cependant d’un manque de sensibilité, c’est pourquoi l’accès à un « matériel biologique » entièrement marqué au C-13 (isotope stable du C-12) est une opportunité permettant : (1) d'augmenter la résolution spectrale et ainsi augmenter le nombre de métabolites caractérisables par RMN, et (2) de faciliter l’attribution des compositions élémentaires des signaux HRMS issus de métabolites inconnus par comparaison des profils LC-HRMS d’échantillons marqués et non marqués récoltés dans les mêmes conditions.
Le projet de recherche de M2 vise à analyser, par spectrométrie de masse à très haute résolution (Orbitrap Fusion, Thermo) couplée à la chromatographie liquide et par RMN 2D hétéronucléaire, les urines de souris marquées au carbone-13 et de les comparer aux urines non marquées. Cette étude visera à exploiter de façon synergique les données obtenues via les deux techniques analytiques pour identifier les métabolites inconnus détectés dans les échantillons. L’élucidation structurale des composés sera également appuyée par des acquisitions LC-HRMS/MS.

Environnement de travail

Le stage M2 se déroulera au sein de deux laboratoires du CEA de Saclay : (1) le laboratoire d’étude du métabolisme des médicaments (LEMM), institut Joliot ; et (2) le laboratoire Structure et Dynamique par résonance magnétique (LSDRM), IRAMIS.
Le LEMM s’est spécialisé dans l’analyse métabolomique depuis 2002, accumulant ainsi une expertise en terme de développement et de validation de méthodes LC-MS pour le profilage de biofluides et extraits tissulaires et cellulaires. Il est équipé d’une plateforme analytique constituée de 6 instruments à basse résolution (QqQ) et 7 instruments à haute et très haute résolution (Orbitrap et Q-TOF).
Le LSDRM est expert en développement d’approches originales pour la spectroscopie de résonance magnétique. Il est équipé de 6 spectromètres RMN de 1.0 à 11.7 T.

Profil du candidat et candidature

Etudiant ingénieur et/ou M2 en chimie. Spécialité chimie analytique ou chimie organique avec un intérêt pour la chimie analytique et plus particulièrement la spectrométrie de masse et la RMN. Date de début souhaitée: février 2021.
Les candidatures (CV et lettre de motivation) sont à envoyer à annelaure.damont@cea.fr et gaspard.huber@cea.fr

[1] Theodoridis G A et al. Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta 2012, 711, 7-16.
[2] Nagana Gowda G A et al. Recent Advances in NMR-Based Metabolomics. Anal. Chem., 2017, 89 (1), 490-510.
Context and M2 research project

Metabolomics aims to characterize all the "small molecules" (<1500 Da) of a biological sample and is based mainly on two analytical techniques: high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). [1,2] Despite the high complementarity of these two approaches, they are still very rarely used together for the annotation of the metabolome. While LC-HRMS analysis of a single complex biological sample can detect thousands of signals at concentrations down to nanomolar, NMR allows structural identification of the most abundant metabolites in that sample. However, this last technique suffers from a lack of sensitivity. Thus, the access to "biological material" fully labeled with C-13 (stable isotope of C-12) is an opportunity allowing: (1) to increase spectral resolution and thus increase the number of metabolites that can be characterized by NMR, and (2) facilitate the assignment of elementary compositions of HRMS signals from unknown metabolites by comparison of LC-HRMS profiles of labeled and unlabeled samples collected in the same conditions.
The M2 research project aims to analyze, by very high resolution mass spectrometry (Orbitrap Fusion, Thermo) coupled with liquid chromatography and by heteronuclear 2D NMR, the urine of mice labeled with carbon-13 and to compare them with unlabeled urine. This study will aim to synergistically exploit the data obtained via both analytical techniques to identify some unknown metabolites detected in the samples. The structural elucidation of the compounds will also be supported by LC-HRMS / MS acquisitions.

Working environment

The M2 traineeship will take place in two CEA Saclay laboratories: (1) the drug metabolism study laboratory (LEMM), Joliot institute; and (2) the laboratoire structure et dynamique par résonance magnétique (LSDRM), IRAMIS.
LEMM is specialized in the analysis of the metabolome since 2002, thus accumulating expertise in the development and validation of LC-MS methods for profiling biofluids, and tissue and cell extracts. It is equipped with an analytical platform consisting of 6 low resolution instruments (QqQ) and 7 high and very high resolution instruments (Orbitrap and Q-TOF).
LSDRM is an expert in developing novel approaches for magnetic resonance spectroscopy. It is equipped with 6 NMR spectrometers from 1.0 to 11.7 T.

Profile of the candidate and application

Engineering student and/or M2 in chemistry. Specialty in analytical chemistry or organic chemistry with an interest in analytical chemistry and more particularly mass spectrometry and NMR. Desired start date: February 2021.
Applications (CV and cover letter) should be sent to annelaure.damont@cea.fr and gaspard.huber@cea.fr

[1] Theodoridis G A et al. Liquid chromatography–mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta 2012, 711, 7-16.
[2] Nagana Gowda G A et al. Recent Advances in NMR-Based Metabolomics. Anal. Chem., 2017, 89 (1), 490-510.
Mots clés/Keywords
metabolomique
metabolomics
Compétences/Skills
spectrométrie de masse, résonance magnétique nucléaire
mass spectrometry, nuclear magnetic resonance
Logiciels
XCalibur Topspin
Étude expérimentale de l’effet du flux hydrodynamique sur la conformation de protéines adsorbées sur des nanoparticules.
Experimental study of the effect of the hydrodynamic flux on the adsorption of proteins at the surface of nanoparticles

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

28/02/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

GOBEAUX Frederic
+33 1 69 08 55 21

Résumé/Summary
Lors de l’introduction de nanoparticules dans un milieu biologique, il se forme une couche de protéines adsorbées à leur surface, ce qui a pour effet de leur donner une nouvelle identité biologique qui définira leur bioactivité. L’objectif de ce projet est d’étudier l’effet du flux hydrodynamique sur cette couche de protéines et la stabilité des nanoparticules.
Upon introduction of nanoparticles in a biological medium, proteins adsorb on their surface, giving them a new biological identity that will define their bioactivity. The aim of this project is to study the effect of the hydrodynamic flow on this protein layer and on the nanoparticle stability.
Sujet détaillé/Full description
La compréhension du devenir des nanoparticules dans les milieux biologiques est cruciale pour leur utilisation dans le cadre d’applications biomédicales. Nous savons qu’après l’injection de nanoparticules in vivo, les protéines en circulation s’adsorbent à leur surface et créent une couche appelée « couronne de protéines » qui confère au nanoparticules une nouvelle identité. Cette couronne va donc dicter la biodistribution, la pharmacocinétique, l’efficacité thérapeutique et la potentielle toxicité des nanoparticules. Tandis que l’étude de la structure, de la composition et de la dynamique de formation de cette couronne de protéines a déjà motivé de nombreuses recherches, nous en savons encore peu sur les effets du flux hydrodynamique alors qu’il s’agit d’une caractéristique crucial du milieu sanguin par exemple.
Nous proposons donc de déveloper une méthodologie pour apprécier le rôle du flux et du cisaillement sur le couple nanoparticules/protéines en combinant différentes techniques analytiques. En effet, nous nous intéresserons aussi bien à la stabilité et à l’integrité des nanoparticles (à l’aide de méthodes de diffusion, de le microscopie électronique) qu’aux changements de conformations subis par les protéines (à l’aide de méthodes spectroscopiques). Quand cela sera possible, les caractérisations auront lieu in situ.
Ce projet sera mené en collaboration avec Simona Mura (Institut Galien, Faculté de Pharmacie de Chatenay Malabry and Frank Wien (Synchrotron Soleil). Il est financé par le LabEx NanoSaclay.
Understanding the future of nanoparticles in biological media in of utmost importance for their potential use in biomedical applications. It is known that after in vivo administration of nanoparticles, their surface is rapidly covered by adsorbed proteins forming a so-called “corona” that strongly affects their biodistribution, pharmacokinetic, therapeutic efficacy and potential toxicity.1 While the structure and composition of this “protein corona” has already prompted a lot of research, the role of the hydrodynamic flow on the nanoparticle evolution in the presence of proteins (protein adsorption, nanoparticle aggregation or dissolution etc…) has so far received little attention although it is a key feature of blood medium.2
By combining different analytical techniques, we thus propose to develop a methodology to appreciate the effect of flow and shearing on the nanoparticles/proteins pair. Indeed, we will investigate the stability and integrity of the nanoparticles (scattering methods, cryo-TEM) as well as the conformational changes of the proteins (spectroscopic methods). When possible, these analyses will be performed in situ.
This project is carried out in collaboration with Simona Mura (Institut Galien, Faculté de Pharmacie de Chatenay Malabry and Frank Wien (Synchrotron Soleil). It is supported by the LabEx NanoSaclay.
Mots clés/Keywords
physico-chimie, biophysique, nanoscience
physical-chemistry, biophysics, nanoscience
Compétences/Skills
Dichroïsme circulaire, fluorescence, diffusion des rayons X/neutrons aux petits angles
Circular dichroism, fluorescence spectroscopy, small angle x-ray/neutron scattering
Mise au point de l'analyse de mélanges complexes par RMN au moyen du parahydrogène

Spécialité

Spectroscopie

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/01/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

HUBER Gaspard
+33 1 69 08 64 82

Résumé/Summary
La Résonance Magnétique Nucléaire (RMN), malgré sa faible sensibilité, offre des atouts certains dans l'analyse des extraits métaboliques. L'objet de ce stage est d'appliquer à ces mélanges complexes une technique récemment découverte qui vise à augmenter drastiquement la sensibilité de la RMN.
NMR, despite its low sensitivity, is an analytical technique with definite advantages in the analysis of metabolic extracts. The object of this traineeship is to apply to these complex mixtures a recently discovered technique which aims to drastically increase the sensitivity of NMR.
Sujet détaillé/Full description
La métabolomique vise à caractériser l'ensemble des "petites molécules" (< 1500 Da) d'un échantillon biologique et repose principalement sur la spectrométrie de masse à haute résolution (HRMS) et la résonance magnétique nucléaire (RMN). L’analyse LC-HRMS d’un unique échantillon biologique complexe permet la détection de milliers de signaux à des concentrations allant jusqu’au nanomolaire, alors que la RMN permet l’identification structurale de métabolites, mais seulement des plus abondants en raison de son manque de sensibilité. Une des méthodes connues pour augmenter drastiquement la sensibilité de la RMN emploie les propriétés particulières du parahydrogène. Le laboratoire a développé un montage d'enrichissement du dihydrogène en parahydrogène et effectué des développements méthodologiques sur son utilisation par RMN [1]. Récemment la gamme des molécules dont les signaux RMN sont sensibles à la méthode, jusque-là assez restreinte, a été étendue aux molécules possédant au moins un proton échangeable, une méthode nommée SABRE-Relay [2]. L'observation de noyaux C-13, compatible avec cette récente méthode, permet d'augmenter la résolution spectrale. L’accès à un « matériel biologique » entièrement marqué au C-13 est une opportunité permettant d'observer les noyaux C-13 par SABRE-Relay, et ainsi d'augmenter drastiquement la résolution spectrale par rapport à un spectre RMN du proton. Le laboratoire partenaire LEMM possède actuellement des échantillons d’urines de souris « marquées » au C-13 (et leurs équivalents non marqués) issus de rongeurs ayant été alimentés avec des nutriments intégralement marqués au C-13.
Le projet de recherche de M2 vise à mettre au point au laboratoire la méthode SABRE-Relay et à l'optimiser lors de son application à un jeu d'échantillons d'extraits métaboliques enrichis en isotope 13C. Cet enrichissement isotopique permet d'imaginer de nouvelles expériences de RMN pour mieux caractériser certains métabolites. Les résultats seront ensuite comparés à ceux obtenus par ailleurs par HRMS sur les mêmes échantillons.
Le stage M2 se déroulera au laboratoire structure et dynamique par résonance magnétique (LSDRM)du CEA de Saclay, en collaboration avec le laboratoire d’étude du métabolisme des médicaments (LEMM), dans le cadre d'une étude plus large conjuguant des analyses métabolomiques à base de RMN et de HRMS.
Le LSDRM est expert en développement d’approches originales pour la spectroscopie de résonance magnétique. Il développe en particulier des méthodes visant à augmenter la sensibilité de la RMN. Il est équipé de 6 spectromètres RMN de 1.0 à 11.7 T. Le LEMM s’est spécialisé dans l’analyse métabolomique depuis 2002, accumulant ainsi une expertise en terme de développement et de validation de méthodes LC-MS pour le profilage de biofluides et d'extraits tissulaires et cellulaires.
Profil du candidat
Etudiant ingénieur et/ou M2 en physico-chimie ou chimie. Spécialité chimie analytique ou physico-chimie avec un intérêt pour la RMN, l'instrumentation et les sciences expérimentales.

[1] Guduff et al. Single-Scan Diffusion-Ordered NMR Spectroscopy of SABRE-Hyperpolarized Mixtures. ChemPhysChem 2019, 20, 392–398.
[2] Iali et al. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. Sci. Adv. 2018; 4 : eaao6250
Metabolomics aims to characterize all the "small molecules" (less than 1500 Da) of a biological sample and is based mainly on high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). LC-HRMS analysis of a single complex biological sample allows the detection of thousands of signals at concentrations down to nanomolar, while NMR allows structural identification of metabolites, but only the most abundant due to the lack of sensitivity of NMR. One of the known methods to drastically increase the sensitivity of NMR employs the particular properties of parahydrogen. The laboratory has developed an assembly for enriching dihydrogen in parahydrogen and carried out methodological developments on its use by NMR [1]. Recently the range of molecules whose NMR signals are sensitive to the method has been extended to molecules possessing at least one exchangeable proton, a method called SABRE-Relay [2]. The observation of C-13 nuclei, compatible with this recent method, makes it possible to increase the spectral resolution. Access to "biological material" fully labeled with C-13 is an opportunity to observe C-13 nuclei by SABRE-Relay, and thus to drastically increase the spectral resolution compared to a proton NMR spectrum. LSDRM starts a collaboration with LEMM which owns urine samples from mice labeled with C-13 (and their unlabeled, C-12, equivalents) from rodents that have been fed with nutrients fully labeled with C-13.
The M2 research project aims to develop the SABRE-Relay method in the laboratory and to optimize it during its application to a set of samples of metabolic extracts enriched in the isotope 13C. This isotopic enrichment makes it possible to imagine new NMR experiments to better characterize some metabolites. The results will then be compared with those obtained by others at LEMM by HRMS on the same samples.
The M2 internship will take place in the laboratoire structure et dynamique par résonance magnétique (LSDRM) of the CEA, at Saclay, in collaboration with the laboratory for the study of drug metabolism (laboratoire d’étude du métabolisme des médicaments, LEMM) taking part of a larger study combining metabolomic analyzes based on NMR and HRMS.
LSDRM is an expert in developing novel approaches to magnetic resonance spectroscopy, in particular in the field of methods aiming at increasing the sensitivity of NMR. LSDRM is equipped with 6 NMR spectrometers from 1.0 to 11.7 T. LEMM is specialized in metabolomic analysis since 2002. LEMM has accumulated expertise in the development and validation of LC-MS methods for profiling tissue and cell extracts, and biofluids.

Profile of the candidate
Engineer and/or M2 student in physico-chemistry or chemistry. Specialty in analytical chemistry or physico-chemistry with an interest in NMR, instrumentation and experimental sciences.

[1] Guduff et al. Single-Scan Diffusion-Ordered NMR Spectroscopy of SABRE-Hyperpolarized Mixtures. ChemPhysChem 2019, 20, 392–398.
[2] Iali et al. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. Sci. Adv. 2018; 4 : eaao6250
Mots clés/Keywords
Instrumentation, Hyperpolarisation, Manipulation de gaz
Instrumentation, Hyperpolarization, Gas handling
Compétences/Skills
Résonance Magnétique Nucléaire
Nuclear Magnetic Resonance
Logiciels
Topspin
Nano-objets polymères et hybrides sous irradiation
Polymer and hybrid nano-objects under irradiation

Spécialité

CHIMIE

Niveau d'étude

Bac+4/5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

30/06/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

CARROT Géraldine - RENAULT Jean-Philippe
+33 1 69 08 41 47

Résumé/Summary
Stage M1 ou M2 :
Le projet consiste à synthétiser et à caractériser des nanoparticules polymères à partir de copolymères amphiphiles dont un des blocs est radiosensible. L'autre voie explorée consiste à former des nanoparticules métalliques (effet radiosensibilisant) avec une couronne polymère. L'objectif est ensuite d'incorporer dans ces objets des principes actifs (par interactions hydrophobes ou greffage covalent).
M1 or M2 level internship:
The project consists in the synthesis and the characterization of polymer nanoparticles from amphiphilic copolymers with one radiosensitive block. The other issue is to form metal nanoparticles (radiosensitizing effect) with a polymer corona. The objective is then to incorporate drugs inside these objects (by hydrophobic interactions or covalent grafting).
Sujet détaillé/Full description
Ce projet repose sur le développement de nouveaux systèmes de relargage de principes actifs basés sur la dégradation de polymères par irradiation. Ce type de stimulus n'a jamais été exploré auparavant, pour de telles applications. Cela permet d'envisager un vrai couplage radiothérapie/ chimiothérapie qui se différencie du simple relargage ciblé. Jusqu'ici, nous avons vérifié la faisabilité du procédé par des expériences sur divers films polymères (augmentation du relargage avec la dose d’irradiation). Maintenant, l'objectif est de réaliser la synthèse d'une bibliothèque de copolymères amphiphiles originaux, avec un bloc polymère soluble dans l'eau/biocompatible, et un autre bloc hydrophobe/radiosensible. L'auto-assemblage dans des micelles ou des vésicules mènera à des objets avec un coeur radiosensible où sera localisé le principe actif. Une autre stratégie consiste en l'utilisation d'objets hybrides à base de nanoparticules métalliques (NPs) qui augmentent localement l’effet du rayonnement. Les NPs seront soit incorporées directement dans les micelles polymères, soit fonctionnalisées par une couronne de polymère où pourra être greffé ultérieurement le principe actif. Le premier avantage de ces nouveaux systèmes est de contrôler plus finement le ciblage des principes actifs vers les cellules tumorales afin de limiter les effets secondaires liés à la chimiothérapie et la radiothérapie, via la position du faisceau d'irradiation et/ou les doses absorbées.

Le stage pourra commencer dès le premier trimestre 2021. Merci de prendre garde au délai de traitement des dossiers et de prendre contact au plus tôt avec les responsables.
This project involves the development of new delivery systems for drugs based on the degradation of polymers by irradiation. This new stimulus has never been explored for such applications. This permits to consider a coupled chemo- and radiotherapy beyond the simple trigger release. So far, we have checked the feasibility of the process via experiments on various polymer films. Now, the objective is to perform the synthesis of a library of original amphiphilic copolymers, i.e. with a water-soluble/biocompatible part, together with a hydrophobic/radiosensitive part. The self-assembly into micelles or vesicles will lead to objects with a radiosensitive core where the drug will be located. The other strategy consists in the use of hybrid objects based on metallic nanoparticles (NPs) which increase the local radiation effect. The NPs will be either incorporated to the polymer micelle core, or functionalized with a polymer corona. The first advantage of these new systems is to control more finely the targeting of drug to the tumor cells and to avoid the side effects associated with chemotherapy and radiotherapy, by controlling the position of the irradiating beam and /or the absorbed doses.

Mots clés/Keywords
Chimie des matériaux, Polymères, Organique/ inorganique, Nano-objets
Materials chemistry, Polymers, Organic/ Inorganic, Nano-objects
Compétences/Skills
Synthèses polymères, Chimie organique, Chromatographie d' exclusion stérique (GPC), Spectroscopie UV et FTIR, Thermogravimétrie (TGA), Diffusion de la Lumière.
Polymer synthesis, organic chemistry, SEC, UV and FTIR spectroscopies, TGA, light scattering, etc...
Logiciels
Excel, Origin
Nanogouttes minérales: étude d'impact pour la séparation de terres rares
Mineral nanodroplets: impact study for rare-earth separation

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30/04/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

CARRIERE David
+33 1 69 08 54 89

Résumé/Summary
Nous avons découvert un mécanisme de précipitation exotique intervenant dans certains procédés de recyclage de terres rares. L'objectif de ce stage est d'en évaluer l'imapact sur les procédés existants, et son intérêt pour de nouvelles approches.
We have unveiled an exotic precipitation mechanism involved in some recycling processes of rare-earth elements. The goal of the internship is to evaluate its impact on existing processes, and its potential for new approaches.
Sujet détaillé/Full description
Notre «économie verte» (photovoltaïque, batteries au lithium) repose en grande partie sur les terres rares (TR); mais leur extraction soulève de lourdes préoccupations écologiques et leur recyclage reste rare. Tout progrès dans les processus de séparation et de précipitation profitera à l'équilibre environnemental mondial.

Dans ce contexte, nous avons mis en évidence la formation spontanée de «nanogouttelettes minérales» lors de la coprécipitation d'ions cérium par l'acide oxalique dans l'eau, étape clé dans certains processus de récupération des TR. Les nanogouttelettes minérales sont constituées d'un liquide riche en réactif qui se transforme en cristaux d'oxalate de cérium après plusieurs dizaines de secondes. Cette nanophase récemment dévouverte au laboratoire reste ignorée dans les processus actuels de séparation et de récupération.

L'objectif de ce stage est d'évaluer l'impact des nanogouttelettes minérales sur les processus existants, et d'explorer son potentiel pour des voies alternatives: i) évaluer leur sensibilité aux paramètres physico-chimiques pertinents pour les applications, ii) confrimer / infirmer leur existence dans un contexte plus large une variété de terres rares, et iii) évaluer leur mouillage avec des surfaces d'hydrophobicité et de tailles de pores variables (nm-µm).
Our “green economy” (photovoltaics, lithium batteries) largely relies on the rare-earth (RE) elements; but their extraction raises heavy ecological concerns, and their recycling is scarce. Any progress in the separation and precipitation processes will benefit the global environmental balance.

In this context, we evidenced the spontaneous formation of “mineral nanodroplets” during the co-precipitation of cerium ions by oxalic acid in water, a key step in some recovery process of RE. The mineral nanodroplets consist in a reactant-rich liquid that convert into the cerium oxalate crystals after several tens of seconds. This newly reported nanophase is ignored in the current separation and recovery processes.

The aim of this internship is to evaluate the impact of the mineral nanodroplets on existing processes, and explore its potential for alternative routes: i) assess their sensitivity towards physico-chemical parameters relevant to applications, ii) prove / disprove their existence in a broader variety of rare-earths, and iii) assess their wetting with surfaces of varying hydrophobicity and pore sizes (nm-µm).
Mots clés/Keywords
Séparation des terres rares, co-précipitation, nucléation non-classique, diffusion des rayons X, cro-microscopie, luminescence
Rare-earth separation, co-precipitation, non-classical nucleation, X-ray scattering, cryo-microscopy, luminescence
Compétences/Skills
Chimie des solutions, cryo-microscopie en transmission, spectroscopie de luminescence, diffusion des rayons X en laboratoire et synchrotron
Solution chemistry, cryo-electron transmission microscopy, luminescence spectroscopy, small-angle X-ray scattering in lab and synchrotron
Logiciels
Python
Nanostructures à base de porphyrines
Porphyrin-based nanostructures

Spécialité

Chimie organique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

16/04/2021

Durée

5 mois

Poursuite possible en thèse

oui

Contact

CAMPIDELLI Stéphane
+33 1 69 08 51 34/23 77

Résumé/Summary
Le terme graphène regroupe toute une famille de matériau. Dans ce projet, nous proposons de construire par des méthodes synthèses organiques des nanoparticules de graphène qui ont un intérêt fondamental pour la photoluminescence, par exemple, et qui peuvent servir de brique de base pour la réalisation de graphène de synthèse.
Sujet détaillé/Full description
Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.

D’autre part, à cause de leur structure et de la grande versatilité de leur synthèse, les porphyrines meso-substituées ont permis la formation d’un large éventail de nanostructures covalentes ou supramoléculaires.[1-5] Dans ce contexte, au cours de ce stage nous proposons de synthétiser des dérivés de porphyrines contenant des groupements PAHs (hydrocarbures aromatiques polycycliques)[6] pouvant conduire à des porphyrines pi-étendues et/ou des nanostructures mono- et bidimensionnelles.[7] Avec ces assemblages, nous visons à exploiter les propriétés optiques et optoélectroniques des porphyrines. Ce projet rassemble plusieurs partenaires possédant des expertises complémentaires en chimie (CEA-Saclay) et en microscopie à effet tunnel (ISMO-Univ. Paris-Sud et IM2NP/CINaM à Marseille). Pour ce projet le/la candidat(e) devra posséder une solide formation en chimie organique. Le projet sera réalisé en collaboration avec des physiciens ; le/la candidat(e) doit également avoir un goût prononcé pour le travail multidisciplinaire.

Références :
1. S. Mohnani and D. Bonifazi, Coord.Chem.Rev., 2010, 254, 2342-2362.
2. N. Aratani and A. Osuka, Bull.Chem.Soc.Jpn, 2015, 88, 1-27.
3. R. Haver and H. L. Anderson, Helv.Chim.Acta, 2019, 102, e1800211.
4. L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and S. Hecht, Nat.Nanotechnol., 2007, 2, 687-691.
5. J. Otsuki, Coord.Chem.Rev., 2010, 254, 2311-2341.
6. J. Pijeat, Y. J. Dappe, P. Thuéry and S. Campidelli, Org.Biomol.Chem., 2018, 16, 8106-8114.
7. N. Kalashnyk, M. Daher Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, doi : 10.1021/acs.jpcc.0c05908.
Compétences/Skills
Synthèse organique, RMN, spectrométrie de masse.
Surfaces polymères bactériostatiques
Bacteriostatic polymer surfaces

Spécialité

CHIMIE

Niveau d'étude

Bac+4/5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

30/04/2021

Durée

6 mois

Poursuite possible en thèse

oui

Contact

CARROT Géraldine
+33 1 69 08 41 47

Résumé/Summary
Stage M1 ou M2 :
Le sujet de ce stage porte sur la synthèse et le greffage sur des surfaces, de polymères bactériostatiques. Le but est d'incorporer ces polymères sous forme de couche ou de copolymère, dans des films de polyéthylène, constituant principal des films alimentaires. En plus de la chimie, les polymères et les surfaces seront caractérisés par diverses techniques d'analyses (RMN, FTIR, XPS, microscopie, angle de contact...), avant de faire l'objet d'études en microbiologie. Ce travail se fera au CEA (Laboratoire LICSEN/NIMBE) pour la partie chimie/caractérisation, en collaboration avec l'INRA-AgroParisTech (Laboratoire B2HM) pour la caractérisation et les tests de microbio. Ce stage bénéficie d’un soutien industriel et peut se poursuivre par une thèse.
M1 or M2 level internship:
This project consists in the synthesis and the surface grafting of bacteriostatic polymers. The objective is to incorporate these polymers as a layer or a copolymer inside polyethylene films (main materials of food films). In addition to chemistry, both polymers and surfaces will be characterized by several analytical techniques (NMR, FTIR, XPS, microscopy, contact angles ...) before being studied in microbiology. This project will be performed at CEA ( Laboratory LICSEN/NIMBE) for the synthesis and surface chemistry part, in collaboration with INRA-AgroParisTech (Laboratory B2HM) for the characterization and microbiological tests. This project has an industrial support and may continue with a PhD thesis.


Sujet détaillé/Full description
Les infections microbiennes sont une des grandes préoccupations de nombreuses applications commerciales comme l’emballage alimentaire, la purification de l’eau, les équipements médicaux. Ici nous nous intéressons surtout à la problématique emballage où le challenge est de diminuer la charge microbienne (pour augmenter la durée de conservation, DLC). Une des stratégies consiste à incorporer des polymères bactériostatiques dans la matrice polymère. L'objectif de ce stage est donc de former des copolymères blocs dont l'un des bloc sera le polymère bactériostatique et de préparer des particules greffées avec des chaînes de ce polymère. Les deux composés seront destinés ensuite à être mélangés avec la matrice polymère afin de former des films composites (extrusion). Après la caractérisation des polymères (chromatographie d'exclusion stérique, RMN), des particules (TGA) et des surfaces (FTIR, XPS, goniomètre), des études microbiologiques seront menées avec notre équipe partenaire AgroParisTech.
Nous recherchons pour ce stage, un étudiant M2 motivé qui possède une solide formation en chimie et caractérisation des polymères et des connaissances en mise en œuvre des plastiques et/ou en sciences des surfaces (caractérisation).
Microbial infections are a major concern for many commercial applications such as textiles, food packaging, water purification or medical equipment. Here we are interested mainly in packaging where the challenge here is to reduce the microbial loading (to increase shelf life). The objective is to preferentially incorporate bacteriostatic polymers in packaging due to their advantages of having some mobility and resistance to packaging process conditions (temperature, stretching ...). One of the strategies is to incorporate bacteriostatic polymers into the polymer matrix. The objective is therefore to form block copolymers, with one block that will be the bacteriostatic polymer and to prepare particles grafted with chains of this polymer. The two compounds will then be mixed to the polymer matrix in order to form composite films. After the characterization of polymers (size exclusion chromatography, NMR), particles (TGA) and surfaces (FTIR, XPS, goniometer), microbiological studies will be conducted with our partner team AgroParisTech.
We are looking for this internship, a motivated M2 student who has a solid background in chemistry and polymer characterization and knowledge in surface science (characterization).
Mots clés/Keywords
Chimie des polymères, fonctionnalisation de surface
Polymer chemistry, surface fonctionnalisation
Compétences/Skills
Synthèse (co)polymères, FTIR, chromatographie d'exclusion stérique (CES), angle de contact, microscopie, profilométrie, XPS
Polymer chemistry, FTIR, size-exclusion chromatography, contact angle, microscopy, profilometry, XPS
Synthèse et propriétés optiques de nanoparticules de graphène
Synthesis and optical properties of graphene nanoparticles

Spécialité

Chimie organique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

16/04/2021

Durée

5 mois

Poursuite possible en thèse

oui

Contact

CAMPIDELLI Stéphane
+33 1 69 08 51 34/23 77

Résumé/Summary
Le terme graphène regroupe toute une famille de matériau. Dans ce projet, nous proposons de construire par des méthodes synthèses organiques des nanoparticules de graphène qui ont un intérêt fondamental pour la photoluminescence, par exemple, et qui peuvent servir de brique de base pour la réalisation de graphène de synthèse.
Sujet détaillé/Full description
Le graphène est un matériau bidimensionnel issu, à l'origine, du graphite. Depuis sa découverte qui a valu le Prix Nobel de Physique à Geim et Novoselov en 2010, le graphène a provoqué l'engouement de la communauté scientifique. Le graphène possède des propriétés optiques, électroniques et mécaniques exceptionnelles qui en font un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, fuel cells) ou pour les composites.
De nos jours le terme graphène regroupe toute une famille de matériau : graphène obtenu par exfoliation du graphite, graphène produit par "Chemical Vapor Deposition" (croissance sur un catalyseur à partir de la décomposition d'un dérivé carboné), oxyde de graphène ou nanoparticules et rubans de graphène synthétisé grâce à des procédés de chimie organique. Ces matériaux possèdent des propriétés légèrement différentes et le matériau choisi dépendra de l'application finale.
Le LICSEN (CEA-Saclay) a débuté une collaboration avec le Laboratoire Aimé Cotton (LAC) (ENS Paris-Saclay - Université Paris-Sud) qui visait à étudier les propriétés optiques des particules de graphène synthétisées via l’approche « bottom-up ». La synthèse des motifs graphéniques est basée sur la condensation de molécules polyaromatiques.[1;2] Les nanoparticules de graphène se sont avérées très prometteuses car nous avons pu observer l’émission de photons uniques à température ambiante.[3] Au cours de ce stage de Master, nous proposons de synthétiser d’autres familles de nanoparticules de graphène et d'étudier leurs propriétés optiques ainsi que les relations structures/propriétés.
Ce stage demande une formation de chimiste organicien. Le stage s'effectuera au LICSEN. Le/la candidate devra avoir un gout prononcé pour le travail interdisciplinaire et aimer relever des défis.

Postuler par e-mail, CV et lettre de motivation à :
stephane.campidelli@cea.fr

Références:
[1.] Z. Tomovic, M. D. Watson, K. Müllen, Angew.Chem., Int.Ed. 2004, 43, 755-758.
[2.] A. Narita, X. Y. Wang, X. Feng, K. Müllen, Chem.Soc.Rev. 2015, 44, 6616-6643.
[3.] S. Zhao, J. Lavie, L. Rondin, L. Orcin-Chaix, C. Diederichs, P. Roussignol, Y. Chassagneux, C. Voisin, K. Müllen, A. Narita, S. Campidelli, J.-S. Lauret, Nat.Commun. 2018, 9, 3470.
Compétences/Skills
Synthèse organique, RMN, spectrométrie de masse.
Images
Spectroscopies électroniques
Interfaces, fluides complexes et microfluidique
Active surfaces for waste treatment
Active surfaces for waste treatment
Archaeological experiment on medieval minting process
Etude du comportement des éléments traces du minerai aux produits finis dans la chaîne opératoire indirecte
Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system.
High frequency carbon electronics
High frequency carbon electronics
Greffage localisé
Greffage localisé
Electrogreffage localisé sur silicium
Electrogreffage localisé sur silicium
Exploration d’alliages nanostructurés comme électrodes négatives de batteries Mg-ion
Exploration d’alliages nanostructurés comme électrodes négatives de batteries Mg-ion
Grafting of organic polymer films on surfaces from aqueous solutions
Grafting of organic polymer films on surfaces from aqueous solutions
Evidence of the metal-carbon covalent link between electrode and organic electrografted films
Conducting organic electrografted films for dry lubrication
Conducting organic electrografted films for dry lubrication
Localized electrografting
Localized electrografting
Les formiates de silicium : de nouveaux mimes pour améliorer l’efficacité énergétique des hydrures de silicium
Brevet  : Procédé et appareil de positionnement d\'un micro- ou nano-objet sous contrôle visuel
Brevet : Procédé d\'hydrodésulfurisation sélective en prodondeur d\'une charge d\'hydrocarbures à l\'aide d\'un nanocatalyseur non supporté obtenu par pyrolyse au laser
Des polymères très accrocheurs : l’\'envolée de Pegas
Distribution des ions à la surface de solutions salines et interactions à courte portée
Distribution des ions à la surface de solutions salines et interactions à courte portée
Chimie quantique et simulations moléculaires
Chimie de surface pour la biologie et la santé
Hybrid carbon nano-materials for energy conversion
Carbon nanotubes and graphene functionalization
Carbon nanotubes and graphene functionalization
Organic electrografting: mechanism and applications
Transformations catalytiques pour l’énergie
Transformations catalytiques pour l’énergie
Laboratoire d\'Etude des Eléments Légers (LEEL)
Caractérisation de matériaux pour l\'énergie / Characterization of materials for energy
Une micro-sonde RMN métabolique in vivo
Une micro-sonde RMN métabolique in vivo
Une micro-sonde RMN métabolique in vivo
The use of archeological analogues for understanding the long-term behavior of nuclear glasses
Irradiation cellulaire en mode ion par ion
Des surfaces auto-adhésives pour la nanoélectronique (graphène), la chimie ou la biologie
Des surfaces auto-adhésives pour la nanoélectronique (graphène), la chimie ou la biologie
Des surfaces auto-adhésives pour la nanoélectronique (graphène), la chimie ou la biologie
Complexes cyanure des éléments f
Complexes cyanure des éléments f
Synthesis and reactivity of U(IV) and U(V) bis(metallacycle) complexes
Synthesis and reactivity of U(IV) and U(V) bis(metallacycle) complexes
Nucleation growth and ordering of gold nanoparticles
Nucleation growth and ordering of gold nanoparticles
Nucleation growth and ordering of gold nanoparticles
Nucleation growth and ordering of gold nanoparticles
Des surfaces \'prêtes à coller\' ou auto-adhésives
Des surfaces \'prêtes à coller\' ou auto-adhésives
Brevet : Détecteurs nanoporeux de composés aromatiques monocycliques et autres polluants
Developments at the Physics-Chemistry-Biology interface
Laboratoire Edifices Nanométriques (LEDNA)
Nouveau procédé d\'élaboration à grande échelle de films d\'oxyde de graphène réduit
Nouveau procédé d\'élaboration à grande échelle de films d\'oxyde de graphène réduit
Nouveau procédé d\'élaboration à grande échelle de films d\'oxyde de graphène réduit
Nouveau procédé d\'élaboration à grande échelle de films d\'oxyde de graphène réduit
Chimie fondamentale des actinides et des lanthanides
Matériaux pour l’\'électronique organique
Simulations ab initio d’agents de contraste à base de gadolinium pour l’imagerie médicale
Simulations ab initio d’agents de contraste à base de gadolinium pour l’imagerie médicale
Recycler le CO2
Recycler le CO2
Recycler le CO2
Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Effets spécifiques ioniques
Effets spécifiques ioniques
Effets spécifiques ioniques
Recyclage du CO2
Microfluidique
Etude des mécanismes de croissance de nanotubes de carbone alignés
Exploring nanostructured alloys as negative electrodes for Mg-ion batteries
Exploring nanostructured alloys as negative electrodes for Mg-ion batteries
Recycler des déchets chimiques, en substitut de la pétrochimie
Graphène imprimable : nouveau matériau pour l\'électronique flexible et rapide
Graphène imprimable : nouveau matériau pour l\'électronique flexible et rapide
Graphène imprimable : nouveau matériau pour l\'électronique flexible et rapide
Surfaces actives pour la dépollution
Surfaces actives pour la dépollution
Advanced Electrochemical Microscopy (SECM)
Graftfast®
Graftfast®
Cellules photovoltaïques organiques et hybrides
Brevet : Détecteur multifonctionnel de composés gazeux et ses applications
Brevet : Dispositif de synthèse d\'un matériau composite nanostructure et procédé associé.
Laboratoire Structure et Dynamique par Résonance Magnétique (LSDRM)
Électronique organique et moléculaire
Électronique organique et moléculaire
Brevet : Capteurs chimiques a base de nanotubes de carbone, procédé de préparation et utilisations
Nucleophilic carbene complexes of Uranium(IV) and (VI)
Nucleophilic carbene complexes of Uranium(IV) and (VI)
New developments in the sandwich complexes of the f-elements
New developments in the sandwich complexes of the f-elements
New developments in the sandwich complexes of the f-elements
\
\
\
\
De nouvelles briques moléculaires hybrides \
De nouvelles briques moléculaires hybrides \
Projet ANR LabCOM : MESTREL
X-ray Photoelectron Spectroscopy (XPS)
Selective chemical functionalization of carbon nanotube by diazonium coupling
UMR 3685 NIMBE : Nanosciences et Innovation pour les Matériaux, la Biomédecine et l\'Énergie
Brevet : Procédé de préparation d\'amines méthylées
Brevet : Procédé de préparation de composés azotés
Un traitement de surface alternatif aux procédés au chrome hexavalent (Cr VI)
Nouvelle instrumentation RMN pour l’analyse de mouvements moléculaires lents à haute résolution.
Nouvelle instrumentation RMN pour l’analyse de mouvements moléculaires lents à haute résolution.
Amyloid-like reversible self-assembly of peptide systems.
Amyloid-like reversible self-assembly of peptide systems.
Synthèse de nanoparticules dans l\'eau : un mode de croissance original et générique
Synthèse de nanoparticules dans l\'eau : un mode de croissance original et générique
Synthèse de nanoparticules dans l\'eau : un mode de croissance original et générique
Synthèse de nanoparticules dans l\'eau : un mode de croissance original et générique
Synthesis of luminescent oxide nanoparticles in water: template effect of the amorphous phase
Synthesis of luminescent oxide nanoparticles in water: template effect of the amorphous phase
Synthesis of luminescent oxide nanoparticles in water: template effect of the amorphous phase
Incorporation d’éléments légers dans les minéraux
Analyse quantitative par faisceaux d’ions de systèmes Métal-Carbone-Oxygène : application à UC oxydé
Analyse quantitative par faisceaux d’ions de systèmes Métal-Carbone-Oxygène : application à UC oxydé
Cellules photovoltaïques hybrides SiNWs/polymère
Réduction du graphène oxydé par microscopie électrochimique : une méthode générique de fonctionnalisation de surface
Réduction du graphène oxydé par microscopie électrochimique : une méthode générique de fonctionnalisation de surface
Réduction du graphène oxydé par microscopie électrochimique : une méthode générique de fonctionnalisation de surface
Réduction du graphène oxydé par microscopie électrochimique : une méthode générique de fonctionnalisation de surface
Réduction du graphène oxydé par microscopie électrochimique : une méthode générique de fonctionnalisation de surface
Influence of corrosion products nature on dechlorination treatment: case of wrought iron archaeological ingots stored 2 years in air before NaOH treatment
Il faudra bien se passer du platine ! Catalyse de la réduction de l\'oxygène
Il faudra bien se passer du platine ! Catalyse de la réduction de l\'oxygène
Il faudra bien se passer du platine ! Catalyse de la réduction de l\'oxygène
Xe polarisé en cage : une sonde RMN sensible et sélective de son environnement
Xe polarisé en cage : une sonde RMN sensible et sélective de son environnement
Xe polarisé en cage : une sonde RMN sensible et sélective de son environnement
Xe polarisé en cage : une sonde RMN sensible et sélective de son environnement
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
Laboratoire de Chimie Moléculaire et Catalyse pour l\'Energie (LCMCE)
Brevet : Dispositif pour la synthese de nanoparticules de type coeur-coquille par pyrolyse laser et procede associe.
Brevet: : Procédé de dosage d\'un élément présent en tout ou partie sous la forme de particules en suspension dans un liquide
Brevet : Procédé de synthèse d\'un materiau composite nanostructure et dispositif de mise en oeuvre associé..
Brevet  : Procédé  et dispositif de correction de champ magnetique pour une machine de RMN
La biodistribution des nanotubes de carbone dans l’organisme
Nanoparticules d\'or pour la plasmonique et la nanomédecine
Spectroscopie de photoélectrons X sur des nanoparticules libres
Spectroscopie de photoélectrons X sur des nanoparticules libres
ANR IRANGKOR
Brevet : Procédé de fabrication de nanotubes d\'imogolite à base de germanium
Detection of pathogen bacteria
Detection of pathogen bacteria
Formaldehyde sensor
Formaldehyde sensor
Nitrogen trichloride sensor
Le fer, allié de la pierre dès la conception des cathédrales gothiques
Le fer, allié de la pierre dès la conception des cathédrales gothiques
Spintronique Organique au LICSEN
Comment le verre se défend des agressions de l’eau
Comment le verre se défend des agressions de l’eau
Étude accélérée du vieillissement des batteries lithium-ion par chimie sous rayonnement
Étude accélérée du vieillissement des batteries lithium-ion par chimie sous rayonnement
Étude accélérée du vieillissement des batteries lithium-ion par chimie sous rayonnement
Nanoparticules : une méthode pour étudier les faibles doses
Nanoparticules : une méthode pour étudier les faibles doses
Brevet : Procédé de détermination de la résistance cellulaire aux médicaments
Brevet  Nouveaux métallopolymeres et leur utilisation
Nouveau procédé pour le recyclage chimique de déchets plastiques
Une nouvelle stratégie pour récupérer des composés aromatiques à partir de déchets de bois
Une nouvelle stratégie pour récupérer des composés aromatiques à partir de déchets de bois
Etude par microsonde nucléaire d\'électrodes de composition ternaire pour accumulateur Li-ion
Etude par microsonde nucléaire d\'électrodes de composition ternaire pour accumulateur Li-ion
Etude par microsonde nucléaire d\'électrodes de composition ternaire pour accumulateur Li-ion
Contrôler la microstructure des matériaux céramiques pour piles à combustible au travers des méthodes de frittage : cas du composé La1.95Sr0.05Zr2O6.975
Contrôler la microstructure des matériaux céramiques pour piles à combustible au travers des méthodes de frittage : cas du composé La1.95Sr0.05Zr2O6.975
Datation au carbone 14 d\'un temple d\'Angkor
Datation au carbone 14 d\'un temple d\'Angkor
Datation au carbone 14 d\'un temple d\'Angkor
Datation au carbone 14 d\'un temple d\'Angkor
Nouveaux outils contre le cancer
Chimie sous rayonnement - Radiolyse
Investigation of the long term corrosion phenomenon by an innovative characterization tool: Scanning Transmission X-ray Microscopy
Science des matériaux et chimie pour l\'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage
Un cristal liquide aux propriétés originales : la phase colonnaire des suspensions d\'imogolite
Un cristal liquide aux propriétés originales : la phase colonnaire des suspensions d\'imogolite
3D printing for cyclonic spray chamber in ICP spectrometry
Brevet : Procédé de fonctionnalisation de surface
Noble gas spin-exchange optical pumping (SEOP) setup in a van
Noble gas spin-exchange optical pumping (SEOP) setup in a van
Noble gas spin-exchange optical pumping (SEOP) setup in a van
Le terbium pour une méthode optique de diagnostic de la tuberculose
Le terbium pour une méthode optique de diagnostic de la tuberculose
Le terbium pour une méthode optique de diagnostic de la tuberculose
Brevet : Procédé de photo-immobilisation de biomolécules sur un support non fonctionnalisé
Brevet : Procédé de préparation de composés aromatiques à partir de la lignine
Brevet : Matériau implantable greffé d\'un film cellulaire antiprolifératif et/ou antibactérien synthétisé à partir d\'une molécule bi fonctionnelle
Corrosion long terme  : dégradation du verre nucléaire en présence de produits de corrosion archéologiques
Corrosion long terme  : dégradation du verre nucléaire en présence de produits de corrosion archéologiques
Corrosion long terme  : dégradation du verre nucléaire en présence de produits de corrosion archéologiques
Laboratoire d’Etude des Traitements et Revêtements Innovants pour le Patrimoine
Electrolytes at interfaces
Electrolytes at interfaces
The labcom  project LETRIP
Projet FISC : Fractionnement Isotopique du Soufre pour la Corrosion
La vie des électrons et le vieillissement de batteries
La vie des électrons et le vieillissement de batteries
La vie des électrons et le vieillissement de batteries
De la molécule au matériau moléculaire
Fonctionnalisation de surface / surface functionnalisation
Equipe \
Biofortification : découverte de gènes impliqués dans l’accumulation du zinc dans les graines
Biofortification : découverte de gènes impliqués dans l’accumulation du zinc dans les graines
Biofortification : découverte de gènes impliqués dans l’accumulation du zinc dans les graines
Chimie de coordination
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Hyperpolarized species for NMR/MRI : parahydrogen
Hyperpolarized species for NMR/MRI : parahydrogen
Hyperpolarized species for NMR/MRI : parahydrogen
Hyperpolarized species for NMR/MRI : parahydrogen
Matériaux innovants pour diodes PhOLED bleues et vertes
Matériaux innovants pour diodes PhOLED bleues et vertes
Des memristors organiques pour les réseaux de neurones
Des memristors organiques pour les réseaux de neurones
Il n’y a pas \
Il n’y a pas \
Il n’y a pas \
Electrochimie
Brevet :  Procédé de greffage de film mince polymérique sur substrat et procédé de métallisation de ce film mince
Brevet : Procédé de génération d\'un jet de nanoparticules
Brevet : Accumulateur au lithium comprenant un matériau d\'électrode positive a base d\'un matériau carbone spécifique fonctionnalise par des composés organiques spécifiques
Brevet:  Procédé de synthèse de nanocomposites a base de TiO2 et de nanostructures carbonées
Brevet :  Solide poreux ayant une surface externe greffée avec un polymère
Brevet : Matrice nanoporeuse et son utilisation / Nanoporous matrix and use thereof
Bistabilité magnétique de molécules individuelles sur surface ferrimagnétique
Brevet :  Matériau de détection de composés du phénol et ses applications
Brevet ; Matériaux moléculaires émissifs photoréticulables
Brevet :  Procédé de dépolymérisation de matériaux polymères oxygénés.
Brevet : Dispositif de caractérisation de particules dans un jet de particules sous vide
Spectroscopie RMN de bruit de spin : un modèle analytique complet pour une sensibilité inégalée
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
NMR : Novel zwitterionic reverse micelles for encapsulation of proteins in low-viscosity media
NMR : Novel zwitterionic reverse micelles for encapsulation of proteins in low-viscosity media
NMR : Novel zwitterionic reverse micelles for encapsulation of proteins in low-viscosity media
WideNMR
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Projet ANR Max4us: Miniaturization And hyperpolarized Xenon NMR for Ultrahigh Sensitivity
Cellular scale
Spectrométrie de photoélectrons X  (XPS)
Spectrométrie de photoélectrons X  (XPS)
Computational NMR
Physique et vivant / Physics and life
NMR: Relaxation studies in the presence of off-resonance rf irradiation
NMR: Relaxation studies in the presence of off-resonance rf irradiation
Hyperpolarized species for NMR/MRI : Laser-polarized xenon
Hyperpolarized species for NMR/MRI : Laser-polarized xenon
Hyperpolarized species for NMR/MRI : Laser-polarized xenon
Brevet : Nouveaux complexes pour la séparation de cations
Brevet: Nanofibres gonflables et insolubles et leur utilisation dans le traitement des effluents essentiellement aqueux
Electronic structure theory to decipher the chemical bonding in actinide systems
Electronic structure theory to decipher the chemical bonding in actinide systems
Brevet : Nanofibres gonflables et insolubles et leur utilisation dans le traitement des effluents essentiellement aqueux
Nouvelle microscopie optique très haute sensibilité pour l\'observation des nanomatériaux bidimensionnels
SWAXS Lab -Saclay : The SAXS/ GISAXS/ X-ray reflectomer beamline
SWAXS Lab -Saclay : The SAXS/ GISAXS/ X-ray reflectomer beamline
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Brevet :  Utilisation de formiates de bore pour la réduction de fonctions organiques insaturées
Projet Nanoprotection
Projet Nanoprotection
Projet Nanoprotection
Un primaire d’adhésion avant peinture, sans chrome VI, pour l\'aéronautique et le transport
Un primaire d’adhésion avant peinture, sans chrome VI, pour l\'aéronautique et le transport
Un primaire d’adhésion avant peinture, sans chrome VI, pour l\'aéronautique et le transport
Matériaux et irradiation
Nucléation-croissance de Nanoparticules d’or
Nucléation-croissance de Nanoparticules d’or
Membrane polymère pour le traitement d\'effluents pétroliers  (GASPOM)
Catalyse pour la transformation du CO2 / Catalysis for CO₂ conversion
Catalyse pour la transformation du CO2 / Catalysis for CO₂ conversion
Transformation de la biomasse : dépolymérisation de la lignine / Biomass conversion: lignin depolymerization
Des progrès dans la compréhension de la biominéralisation par une nouvelle microscopie X
Cristallographie : Quand un ordre inattendu émerge d’un matériau nanostructuré
Améliorer la sensibilité d’analyse d’échantillons biologiques, avec la microfluidique
Améliorer la sensibilité d’analyse d’échantillons biologiques, avec la microfluidique
Améliorer la sensibilité d’analyse d’échantillons biologiques, avec la microfluidique
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Etude du vieillissement de batteries par irradiation
Stockage des déchets nucléaires en conteneur acier en milieux argileux :  mis en évidence d\'une couche nanométrique contrôlant la corrosion
Stockage des déchets nucléaires en conteneur acier en milieux argileux :  mis en évidence d\'une couche nanométrique contrôlant la corrosion
Metrology of nanoparticles
Projet Cleverest (Nov 2017-Nov 2019)
Projet Cleverest (Nov 2017-Nov 2019)
Projet Cleverest (Nov 2017-Nov 2019)
Brevet : Utilisation de formiates silylés comme équivalents d\'hydrosalines
Suivi des  nanoparticules de TiO2 dans les végétaux, en fonction de la nature du sol
Suivi des  nanoparticules de TiO2 dans les végétaux, en fonction de la nature du sol
Suivi des  nanoparticules de TiO2 dans les végétaux, en fonction de la nature du sol
Laboratory \'Structure and Dynamics by Magnetic Resonance\'
Compréhension et optimisation de l’\'électrogreffage local
ANR LabCom 2018 - DESIR
ANR LabCom 2018 - DESIR
Solid State NMR studies of Glasses
Solid State NMR studies of Glasses
Des nanotubes fonctionnalisés pour augmenter la capacité et la stabilité des batteries Li-soufre (Li-S)
Des nanotubes fonctionnalisés pour augmenter la capacité et la stabilité des batteries Li-soufre (Li-S)
Des nanotubes fonctionnalisés pour augmenter la capacité et la stabilité des batteries Li-soufre (Li-S)
Projet SIMBBAC : \
Computational approaches of xenon encapsulated in functionalized host systems
Étude par spectroscopie de fluorescence femtoseconde d\'un nouveau colorant \
Étude par spectroscopie de fluorescence femtoseconde d\'un nouveau colorant \
Étude par spectroscopie de fluorescence femtoseconde d\'un nouveau colorant \
Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy
Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy
Chimie environnementale et dépollution / Environmental chemistry and depollution
Chimie environnementale et dépollution / Environmental chemistry and depollution
Matériaux nanoporeux obtenus par procédés sol-gel /  Nanoporous materials obtained by sol-gel processes
Matériaux nanoporeux obtenus par procédés sol-gel /  Nanoporous materials obtained by sol-gel processes
Capteurs chimiques pour l’environnement à base d’oxydes poreux / Environmental chemical sensors based on porous oxides
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Élaboration de fibres de carbone à partir de NTC verticalement alignés
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis
Analyse chimique en ligne au LEDNA
Analyses thermogravimétriques au LEDNA
Analyses thermogravimétriques au LEDNA
Analyses thermogravimétriques au LEDNA
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
Diffraction des rayons X : \
Nanofabrication : Mélange et dispersion de nanoparticules ou de nanotubes de carbone
Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.
Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.
Nanotubes de carbone verticalement alignés pour électrodes de supercondensateurs
Microscopies électroniques au LEDNA
Microscopies électroniques au LEDNA
Recuit 2200°c sous atmosphère inerte /  Poste de pesée fractionnement
Recuit 2200°c sous atmosphère inerte /  Poste de pesée fractionnement
Spectroscopie / spectrométrie infra-rouge et Raman (LEDNA)
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Synthèse de nanotubes de carbone par CVD
Synthèse de nanotubes de carbone par CVD
Etude par analyse in situ de la formation de graphène par CVD
Nano-composites : propriété mécanique et thermique de nanotubes de carbone dans une matrice polymère
Suivre en direct une synthèse chimique grâce à la RMN
Suivre en direct une synthèse chimique grâce à la RMN
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
Conductivité ionique dans les grenats LLAZO
Conductivité ionique dans les grenats LLAZO
Vers un substitut sanguin à base de nanoparticules de silice
Nouvelle électrode fonctionnelle en alliage InSb pour les batteries magnésium-ion
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Elaboration d\'un outil d\'acquisition RTI open source (Reflectance Transformation Imaging)
Sonde bimodale fluorescence –RMN pour la détection spécifique des protéines
Sonde bimodale fluorescence –RMN pour la détection spécifique des protéines
Sonde bimodale fluorescence –RMN pour la détection spécifique des protéines
Chantier CNRS Notre-Dame
Chantier CNRS Notre-Dame
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
129Xe NMR-based biosensors @ LSDRM
Brevet : Nanocomposite photoactif et son procédé de fabrication / Photoactive nanocomposite and method for the production thereof
Brevet : Procédé de fabrication de nanotubes de carbone verticalement alignés, et condensateurs électrochimiques utilisant ces nanotubes comme électrodes
Brevet : Procédé de préparation d\'une électrode comprenant un support en aluminium, des nanotubes de carbone alignés et un polymère organique électro-conducteur, la dite électrode et ses utilisations
Brevet : Procédé de préparation d’alkylamines / Method for preparing alkylamines
Brevet : Procédé de préparation de méthoxyboranes et de production de méthanol / Method for preparing methoxyboranes and for producing methanol
Brevet : Procédé de fabrication d\'un dispositif microstructuré et dispositifs de mise en œuvre associés
Brevet : Cellule de mesure par résonance magnétique nucléaire en milieu liquide avec une bobine à couplage inductif, système comprenant une telle cellule et son utilisation
Brevet : Procédé de préparation de matériaux hybrides cœur-coquille
Brevet : Dispositif pour la synthèse de nanoparticules de type cœur-coquille par pyrolyse laser et procédé associé.
Brevet : Procédé de dopage par l\'azote de matériaux solides
Brevet : Procédé de préparation de molécules électroluminescentes organiques
Brevet :  Procédé de métallisation d\'une surface d\'un support solide
Importance des modifications chimiques des protéines pour leurs interactions avec les nanoparticules
Importance des modifications chimiques des protéines pour leurs interactions avec les nanoparticules
L’ion uranyle [UO2]2+ : un catalyseur efficace pour la réduction de doubles liaisons C=O
Projet SOS Epaves - Save Our Shipwrecks
La couronne de protéines adsorbées sur des nanoparticules de silice dévoile sa structure
Une couronne d’hémoglobine éclaire les réactions des nanoparticules dans leur milieu biologique
Brevet : Dispositif de dépot de particules de taille nanométrique sur un substrat
Brevet : Préparation de nouveaux capteurs et filtres d\'aldéhydes et/ ou de cétones
Brevet : Procédé de préparation d\'un matériau composite, matériau ainsi obtenu et ses utilisations
Nanotubes d\'imogolites (Aluminosilicates et aluminogermanates) : synthèse et propriétés
Nanotubes d\'imogolites (Aluminosilicates et aluminogermanates) : synthèse et propriétés
Nanotubes d\'imogolites (Aluminosilicates et aluminogermanates) : synthèse et propriétés
Nanotubes d\'imogolites (Aluminosilicates et aluminogermanates) : synthèse et propriétés
Nanotubes d\'imogolites (Aluminosilicates et aluminogermanates) : synthèse et propriétés
Des états excités de l’ADN produits par les rayonnements ionisants.
Une molécule-cage transporteuse d\'oxygène
Procédé de synthèse du méthanol, renouvelable en carbone et silicium
Conception de la Plateforme d’Acquisitions MUlti Dimensions (PAMUD)
Structure, captation cellulaire, migration et toxicité de nanoparticules métalliques greffées de polymères pour la nanomédecine
Structure, captation cellulaire, migration et toxicité de nanoparticules métalliques greffées de polymères pour la nanomédecine
Brevet : Procédé de synthèse de composés organiques marqués au carbone
Brevet : Procédé de synthèse de nanoparticules silicium-germanium de type cœur-coquille par pyrolyse laser, procédé de fabrication d\'une électrode pour batterie au lithium et électrode associée
Brevet : Dispositif portable de microscopie électrochimique, kits le comprenant et leurs utilisations
Brevet : Procédé de formation d\'un film organique polymérique a la surface d\'un substrat métallique mettant en œuvre un gel
Brevet : Couvercle anti-odeur
Brevet : Procédé de croissance de nanotubes de carbone en surface et dans le volume d\'un substrat carboné poreux et utilisation pour préparer une électrode
Brevet : Procédé de dépolymérisation de matériaux polymères oxygénés par catalyse nucléophile
Brevet : Procédé de préparation de matériau sol-gel silicaté nanoporeux monolithique
Brevet : Procédé de fabrication de pigments cosmétiques omniphobes
Brevet : Microsonde pour analyse par résonance magnétique nucléaire
Brevet : Procédé de traitement d\'une pièce métallique spécifique en vue d\'améliorer sa résistance a la corrosion et ses propriétés d\'adhésion a une composition de revêtement, telle qu\'une peinture
Brevet : Procédé de préparation d\'une surface à activité bactériostatique et surface ainsi préparée
Brevet : Procédé de préparation d\'un matériau biocide, bactéricide et/ou bactériostatique
Nanostructures et biomolécules : biomédecine et nanotoxicité / Nanostructures and biomolecules: biomedicine and nanotoxicity
Brevet : Procédé de préparation de composés oxyboranes
Nouvelles surfaces antibactériennes efficaces et modulables par greffage robuste de polyionènes
SCARCE : 18 mois de collaboration entre une université de Singapour et le CEA

 

Retour en haut