Laboratory of Chemistry of Surfaces and Interfaces (LCSI)
logo_tutelle 
Laboratory of Chemistry of Surfaces and Interfaces (LCSI)

Localized electrografting of polymer on gold using the tip of a Scanning Electrochemical Microscope as a pencil. The black bar is 100 microns.

Any material, of stainless steel to the liposomes, the polymer prostheses to carbon fibres interacts with its environment by its surface. Adhesion, corrosion, lubrication, the electrical contact, the biocompatibility or damping are as many current phenomena controlled by surface effects. The alive systems, them also, are the seat of innumerable phenomena of interface located in the lipidic bilayers or on the external surface of proteins. It is thus crucial, at the same time on the fundamental level and the technological level, to know to conceive and build artificial surfaces able to interact with the medium external in a preset way. The Chemistry group of Surfaces and Interfaces devotes its activity in this field, by studying the control of the interfaces matter mineral organics-surface, the latter coming from metals, semiconductors, insulators or carbonaceous materials. Our fields of intervention go from the processes of depollution to micro-electronics, of adhesion to the local electrochemical phenomena, biocompatible surfaces to molecular electronics, photovoltaic cells and fuels cells.

We use primarily electrochemistry to modify conducting material surfaces (which play the role of electrodes during the grafting). Indeed, the injection of electrons starting from conducting surface towards a solution of idoines electroactives molecules leads to the formation of strong covalent bonds between the surface of the electrode and the molecules: we name this process "electrogreffage"; it acts in fact of a cathodic grafting electro-armature, often accompanied by polymerization of an anion type starting from the grafted precursor. The mechanism of this grafting could be deduced from multiple in situ characterizations and ex situ. In parallel, the group was interested in the applications of these grafted organic films and two startups were spin-off from our group, in 2001 and 2009.

Contact: Serge Palacin


Recent publications :

1. Le Goff, A.; Artero, V.; Jousselme, B.; Dinh, P. T.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. ; From Hydrogenase Mimics to Noble-Metal Free Hydrogen-Evolving Electrocatalytic Nanomaterials; Science 2009, sous presse.

2. Ghorbal, A.; Grisotto, F.; Charlier, J.; Palacin, S.; Goyer, C.; Demaille, C.; Localized electrografting of vinylic monomers on conducting substrate using an integrated electrochemical AFM probe. ChemPhyschem 2009, 10, 1053-1057.

3. Le, X. T.; Viel, P.; Jégou, P.; Palacin, S.; Electrochemical-switchable polymer film: an emerging technique for treatment of metal ion waste water; Separation Purification Tech. 2009, 69, 135-140.

4. Tessier, L.; Deniau, G.; Charleux, B.; Palacin, S.; Surface Electroinitiated Emulsion Polymerization (SEEP): A mechanistic approach; Chem. Mater. 2009, 21, 4261–4274.

5. Viel, P.; Le, X. T.; Huc, V.; Bar, J.; Benedetto, A.; Le Goff, A.; Alamarguy, D.; Noël, S.; Baraton, L.; Palacin, S. ; Covalent grafting onto self-adhesive surfaces based on aryldiazonium salt seed layers; J. Mater. Chem. 2008, 18, 5913 - 5920.

6. Charlier, J.; Palacin, S.; Leroy, J.; Del Frari, D.; Zagonel, L.; Barrett, N.; Renault, O.; Bailly, A.; Mariolle, D., Local silicon doping as a promoter of patterned electrografting of diazonium for directed surface functionalization. J. Mater. Chem. 2008, 18, 3136-3142.

7. Mévellec, V.; Roussel, S.; Tessier, L.; Chancolon, J.; Mayne-L'Hermite, M.; Deniau, G.; Viel, P.; Palacin, S., Grafting polymers on surfaces: A new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem. Mater. 2007, 19, 6323-6330.

8. Lenfant, S.; Guérin, D.; TranVan, F.; Chevrot, C.; Palacin, S.; Bourgoin, J. P.; Bouloussa, O.; Rondelez, F.; Vuillaume, D., Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface. J. Phys. Chem. B 2006, 110, 13947-13958.

9. Deniau, G.; Azoulay, L.; Jegou, P.; Le Chevallier, G.; Palacin, S., Carbon-to-metal bonds: Electrochemical reduction of 2-butenenitrile. Surface Science 2006, 600, 675-684.

10. Palacin, S.; Bureau, C.; Charlier, J.; Deniau, G.; Mouanda, B.; Viel, P., Molecule-to-metal bonds: electrografting polymers on conducting surfaces. ChemPhysChem 2004, 10, 1468-1481.

 
#482 - Màj : 26/10/2009
Publications HAL
Thèses
Vous devez préciser le champ "id_ast" pour dans la table des unités.
Stages

Vous devez préciser l'id_ast dans la table des unités.

Images
Active surfaces for waste treatment
Active surfaces for waste treatment
Resonant tunneling diodes on silicon
Resonant tunneling diodes on silicon
Resonant tunneling diodes on silicon
Resonant tunneling diodes on silicon
Grafting of organic polymer films on surfaces from aqueous solutions
Grafting of organic polymer films on surfaces from aqueous solutions
Evidence of the metal-carbon covalent link between electrode and organic electrografted films
Conducting organic electrografted films for dry lubrication
Conducting organic electrografted films for dry lubrication
Covalent grafting of molecular magnets on silicon: towards nano-sized memories
Covalent grafting of molecular magnets on silicon: towards nano-sized memories
Evidence of the role of the organic-metal linkage in the transport properties of metal-molecule-metal junctions
Evidence of the role of the organic-metal linkage in the transport properties of metal-molecule-metal junctions
Hybrid organic solar cells based on silicon nanowires
Hybrid organic solar cells based on silicon nanowires
Localized electrografting
Localized electrografting
Covalent grafting on hydrogenated silicon: towards a molecular RTD diode
Covalent grafting on hydrogenated silicon: towards a molecular RTD diode
Organic electrograting on carbon nanotubes
Organic electrograting on carbon nanotubes
Organic electrografting: mechanism and applications
Brevet : Procédé de revêtement de surfaces
Brevet : Procédé d\'électrogreffage localisé sur des substrats semi-conducteurs photosensibles
Brevet : Procédé de préparation d\'un film organique à la surface d\'un support solide dans des conditions non-électrochimiques, support solide ainsi obtenu et kit de préparation
Brevet : Procédé de soudage d\'une surface polymère avec une surface conductrice ou semi-conductrice
Brevet : Matériau conducteur ou semi-conducteur modifié par greffage électrochimique de films polymères
Brevet : Procédé de garniture d\'une surface par un film organique/Method of coating a surface with an organic film
Brevet : Système microfluidique 3d à zones emboîtées et réservoir intégré, son procédé de préparation et ses utilisations
Brevet : Procédé de fonctionnalisation de surface

 

Retour en haut