Matière sous conditions extrêmes
logo_tutelle 

Les activités du groupe "Matière sous conditions extrêmes" du SPAM rassemblent quatre axes majeurs de recherche :
 

Attophysique / Attophysics

responsable :

Matière à Haute Densité d'Énergie (MHDE)

responsable :

Physique à haute intensité / High Intensity Physics

responsable :

 

En suivant les liens ci-dessus, découvrez nos activités de recherche.
Following the above links, discover our research activities !

 
#176 - Màj : 05/10/2011
Thèmes de recherche

Interaction laser-matière : Matière sous conditions extrêmes

  "Matière sous conditions extrêmes" (LIDyL) se composent de trois groupes de recherche   Attophysique Le groupe ATTO étudie la production par génération d'harmoniques d'ordre élevé dans un gaz d'impulsions de lumière dans l'extrême UV (10-100nm), de durée ultra-brève, typiquement une centaine d'attosecondes (1as=10-18s).......

Interaction laser-matière : Matière sous conditions extrêmes
Voir aussi
CEA/DSM/IRAMIS/SPAM/MEC :  "Matière sous conditions extrêmes" (SPAM) se compose de trois groupes de recherche :    Attophysique                                            responsable : Bertrand Carré  Physique à Haute Intensité                   responsable :  Philippe Martin   Matière à Haute Densité d'Energie     responsable :  Thomas Blenski   En suivant les liens ci-dessus, découvrez nos activités de recherche.
CEA/DSM/IRAMIS/SPAM/MEC :  "Matière sous conditions extrêmes" (SPAM) se composent de trois groupes de recherche     Attophysique Le groupe ATTO étudie la production par génération d'harmoniques d'ordre élevé dans un gaz d'impulsions de lumière dans l'extrême UV (10-100nm), de durée ultra-brève, typiquement une centaine d'attosecondes (1as=10-18s).......
Interféromètre imageur dans l'XUV : Interféromètre imageur à 32nm à conversion de fréquence interne L'interférométrie permet l'accès à l'information de densité électronique en 2D.
Perspectives : Les prochaines étapes de la recherche sur l'accélération ionique à Saclay   Grâce à un riche ensemble de ressources humaines, compétences et moyens techniques, nous allons mettre en place un ambitieux programme de recherche.
PHI et Simulations : Codes particulaires De par sa brièveté et son intensité, l'interaction d'une impulsion laser avec la matière peut être suivie de manière précise grâce aux outils numériques que ce début de siècle met à notre disposition.
Réflectivité dans l'XUV : Etude de l'évolution temporelle de plasmas denses, d'intérêt pour la Warm Dense Matter, par mesure de réflectivité dans l'XUV résolue temporellement et spectralement...   L'étude des propriétés de la matière dense et tiède (WDM - densité du solide et température de quelques eV) concerne une large communauté allant des astrophysiciens aux physiciens du solide.
Stages / Thèses : Notre groupe recrute habituellement un ou deux étudiants ayant obtenu leur M2 chaque année dans le cadre d’études doctorales. Nous offrons également des possibilités de formation par la recherche dans le cadre de stages de Master ou d’autres formations selon les périodes.
Transmission dans l'XUV : Caractérisation de plasmas créés par irradiation intense de feuilles de polypropylène par mesure de l'évolution temporelle de transmission de rayonnement XUV avec une résolution de 100fs...   Le plasma est généré par irradiation intense (I≈3x1017W/cm2) de feuille de polypropylène, sur l'installation laser UHI10 (CEA-Saclay / SLIC).
Faits marquants scientifiques
26 novembre 2012
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide, typiquement de l'ordre de la centaine d'attosecondes (1 as=10-18 s).
01 octobre 2012
Si un aimant peut être "permanent", la dynamique des spins à l'origine de l'aimantation peut être ultra-rapide à l'échelle nanométrique, dans le domaine femtoseconde (10-15 s). Les possibilités actuelles de génération d’impulsions ultra-brèves dans le domaine X-UV  ouvrent de nouvelles perspectives pour les études dans ce domaine.
06 août 2012
L'état électronique d'une molécule réagit très rapidement - à l'échelle de la femtoseconde (10-15 s), voire de l'attoseconde (10-18 s) - à toute perturbation telle qu'une excitation laser, une vibration qui modifie la position relative des noyaux atomiques qui la constitue, ou encore au cours d'une réaction chimique.
03 avril 2012
Pour observer des phénomènes ultrarapides tels que le mouvement des électrons au sein de la matière, les chercheurs ont besoin de sources capables de produire des rayonnements lumineux extrêmement brefs et énergétiques.
11 février 2010
S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb & P. Salières,
Visualiser le mouvement des électrons dans la matière demande d'avoir simultanément une résolution spatiale de l'ordre du dixième de nanomètre et une résolution temporelle à l'échelle attoseconde (1 as = 10-18 s).
06 juillet 2009
Contact CEA : Hamed Merdji
Pour obtenir une image d'un objet, il suffit usuellement de l'éclairer et d'enregistrer la lumière diffusée qui parvient à un détecteur. Si l'image est formée à l'aide d'un objectif, l'optique utilisée impose de nombreuses limitations (résolution, aberrations...).
20 octobre 2008
Fabien Quéré et le Groupe Physique à Haute Intensité (PHI) - IRAMIS – Service des Photons, Atomes et Molécules (SPAM)
Depuis l'invention du laser on cherche à obtenir des faisceaux de longueur d'onde de plus en plus courte, dans le domaine des rayons X. Une des manières de produire du rayonnement XUV est de focaliser un laser intense dans un milieu matériel.
25 septembre 2008
 Highlight in Physicsworld.com (2008 September, 19th) Researchers from Italy, France and Germany have shown that a tabletop laser can be used to accelerate a beam of electrons suitable for use in radiotherapy. The group, led by Antonio Giulietti of the Institute for Physical Chemistry Processes in Pisa, believes that such laser-based particle acceleration could considerably reduce the size and simplify the operation of radiotherapy facilities.
13 mai 2008
W. Boutu1, S. Haessler1, H. Merdji1, P. Breger1, G. Waters2, M. Stankiewicz3, L. J. Frasinski4, R. Taieb5,6, J. Caillat5,6, A. Maquet5,6, P. Monchicourt1, B. Carre1 and P. Salieres1 1. CEA-Saclay, DSM, Service des Photons, Atomes et Molécules, 91191 Gif sur Yvette, France 2. J.J. Thomson Physical Laboratory, University of Reading, Whiteknights, Reading RG6 6AF, UK 3. Institute of Physics, Jagiellonian University, ul.
19 juin 2007

Thomas Blenskia et Bogdan Cichockib

aCEA Saclay, DSM/IRAMIS/LIDYL, Bât 522, F91191 Gif-sur-Yvette Cedex, France bInstitute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland Dans un plasma dense et chaud (étoiles, interaction avec un  laser nanoseconde, fusion inertielle …), les atomes sont partiellement ionisés et forment un mélange d'ions et d'électrons à la dynamique très complexe.
20 septembre 2006
Fabien Quere et le Groupe Physique à Haute Intensité (PHI) - DRECAM – Service de Physique des Atomes et des Molécules (SPAM)
Que se passe t-il lorsqu'un miroir (morceau de verre) est soumis à des impulsions ultra-brèves et ultra-intenses, telles que ses électrons oscillent à des vitesses proches de la vitesse de la lumière ? Ces conditions peuvent être obtenues lors de la seconde réflexion d'une impulsion laser sur un miroir plasma.
19 mai 2003
Gilles Doumy & le groupe PHI, CEA Saclay, DSM/DRECAM/Service de Physique des Atomes et des Molécules (SPAM)
Les impulsions laser ultra-brèves, d'une durée de quelques dizaines de femtosecondes (1 fs = 10-15 s), permettent d'obtenir des puissances considérables avec une énergie par impulsion relativement modeste.
Publications HAL
Thèses
Vous devez préciser le champ "id_ast" pour dans la table des unités.
Stages

Vous devez préciser l'id_ast dans la table des unités.

Images
Effet miroir plasma
Attosecond pulses
Attosecond pulses
High Harmonics Properties
High Harmonics Properties
High Harmonics Properties
High Harmonics Properties
High Harmonics Properties
High Harmonics Properties
High Harmonics Properties
Proton generation
Proton generation
SLIC Lasers help to slim down radiotherapy equipment
SLIC Lasers help to slim down radiotherapy equipment
Sources laser de l\'IRAMIS
EXULITE: une source de lumière dans l\'extrême UV
EXULITE: une source de lumière dans l\'extrême UV
EXULITE: une source de lumière dans l\'extrême UV
EXULITE: une source de lumière dans l\'extrême UV
Des molécules pour contrôler les impulsions lumineuses à l\'échelle attoseconde
Des molécules pour contrôler les impulsions lumineuses à l\'échelle attoseconde
Des molécules pour contrôler les impulsions lumineuses à l\'échelle attoseconde
Apport des codes de physique atomique détaillée
Apport des codes de physique atomique détaillée
La dynamique cohérente des Miroirs Plasmas
La dynamique cohérente des Miroirs Plasmas
La dynamique cohérente des Miroirs Plasmas
La dynamique cohérente des Miroirs Plasmas
CEA/DSM/IRAMIS/SPAM/MEC
Photoionisation atomique en phase gazeuse
PHI et Simulations
PHI et Simulations
PHI et Simulations
PHI et Simulations
PHI et Simulations
Galerie photos
Galerie photos
Galerie photos
Galerie photos
Galerie photos
Galerie photos
Brevet : Procédé et appareil pour générer un rayonnement ou des particules par interaction entre un faisceau laser et une cible
Imagerie ultra-rapide par tir laser unique d’\'objets nanométriques par diffraction cohérente de rayons X
Imagerie ultra-rapide par tir laser unique d’\'objets nanométriques par diffraction cohérente de rayons X
Imagerie ultra-rapide par tir laser unique d’\'objets nanométriques par diffraction cohérente de rayons X
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Contact Attophysique
Transmission dans l\'XUV
Réflectivité dans l\'XUV
Interféromètre imageur dans l\'XUV
Interféromètre imageur dans l\'XUV
Interféromètre imageur dans l\'XUV
Observer la dynamique électronique dans une molécule à l\'échelle de l\'attoseconde (10-18 - 10-15 s)
Observer la dynamique électronique dans une molécule à l\'échelle de l\'attoseconde (10-18 - 10-15 s)
Observer la dynamique électronique dans une molécule à l\'échelle de l\'attoseconde (10-18 - 10-15 s)
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Membres du groupe PHI
CEA/DSM/IRAMIS/SPAM/MEC
CEA/DSM/IRAMIS/SPAM/MEC
CEA/DSM/IRAMIS/SPAM/MEC
Étudier la dynamique d\'aimantation à l\'échelle nanométrique avec une résolution femtoseconde
Étudier la dynamique d\'aimantation à l\'échelle nanométrique avec une résolution femtoseconde
Étudier la dynamique d\'aimantation à l\'échelle nanométrique avec une résolution femtoseconde
Étudier la dynamique d\'aimantation à l\'échelle nanométrique avec une résolution femtoseconde
Génération par plasma laser de rayonnement ultrabref contrôlé
Génération par plasma laser de rayonnement ultrabref contrôlé
Génération par plasma laser de rayonnement ultrabref contrôlé
Imagerie attoseconde d\'orbitales moléculaires
Imagerie attoseconde d\'orbitales moléculaires
Imagerie attoseconde d\'orbitales moléculaires
Imagerie attoseconde d\'orbitales moléculaires
Description quantique et thermodynamique d\'un plasma dense et chaud
Description quantique et thermodynamique d\'un plasma dense et chaud

 

Retour en haut