Equipe PCN "Physique et Chimie des Nano-Objets"
logo_tutelle logo_tutelle logo_tutelle 

Le groupe "Physique et Chimie des Nano-Objets  - PCnano" développe et étudie des matériaux aux propriétés émergentes/multifonction-nelles présentant généralement une dimension nanométrique apportant une exaltation des propriétés physiques initiales. La fabrication se base sur différentes techniques : lithographie laser pulsé de matériaux magnétiques, impression 4D et nanostructuration de matériaux fonctionnels, irradiations aux ions (GANIL) et aux électrons de matériaux semi-conducteurs et/ou isolants solides. Les propriétés physiques des matériaux sont révélées par l’étude des phénomènes de transport aux échelles micro- et mésoscopiques par des compétences en nano-magnétisme, magnéto-acoustique, nano-détection, simulation et électronique de spin.

Voir la page du groupe sur le site internet du LSI.

Membranes composites polymère/métal
Impression 4d de matériaux magnétoactifs
Propagation de magnon
Photodiode à spin
 
#171 - Màj : 05/01/2023
Domaines Techniques
L'Iramis dispose de plusieurs outils d'irradiation ouvert à la communauté scientifique et aux besoins de caractérisation pour la recherche ou la R&D en milieu industriel : Les lignes d'irradiation aux ions lourds au sein du CIRIL, implantées au GANIL à Caen, du Centre de Recherche sur les Ions, les matériaux et la photonique - CIMAP, L'accélérateur d'électrons de l'installation SIRIUS du Laboratoire des Solides irradiés - LSI, sur le campus de l'Ecole Polytechnique, L'irradiation par le faisceau de la microsonde nucléaire du LEEL.

Irradiation par des ions lourds (CIMAP)

Irradiation
Faits marquants scientifiques
19 juin 2022
L'oxyde de gallium (Ga2O3) est un oxyde transparent à grand gap (4.8 eV). Dopé avec des atomes de terre rare (néodyme, Europium…) ses propriétés de photoluminescence le rendent attractif pour la réalisation de dispositifs optoélectroniques.
25 février 2022
Se propageant sur de longues distances à la vitesse de la lumière, les photons peuvent être un bon vecteur de transmission d'une information portée localement par des spins électroniques, à condition de savoir convertir l'état de spin local vers un état de polarisation de la lumière et réciproquement.
07 novembre 2021
La rencontre entre impression 3D et matériaux "intelligents" permet aujourd'hui le développement d’un nouveau champ de recherche : l’impression 4D, qui explore la possibilité d’imprimer des objets dynamiques qui évoluent dans le temps (la 4ème dimension) par interaction avec leur environnement ou sous l'effet de stimuli externes.
06 octobre 2020
La compréhension de la façon dont les spins s'orientent et peuvent être manipulés aux échelles très rapide, pico et femtoseconde, a des implications pour les applications de traitement et de stockage des données ultra-rapides et à faible consommation d'énergie.
07 novembre 2019
Une technique sur site simple et rapide est nécessaire pour les analyses des eaux de lixiviation issues de sols pollués par des métaux lourds (collaboration avec VINCI Construction) ou celles de rejets d’eau de mer pouvant contenir des hydrocarbures (collaboration avec TOTAL). La méthode employée doit être fiable et ultrasensible, pour satisfaire au respect des normes européennes.
20 mai 2019
Divers procédés chimiques permettent de fonctionnaliser des nanoparticules, en particulier via le greffage de polymères.
21 juin 2017
Le graphène est un matériau carbonné bidimensionnel aux propriétés structurales, électroniques et de conduction thermique originales que l'on cherche à exploiter. Au-delà de la simple utilisation de feuillets de graphène (pour l'électronique haute fréquence, ou en tant qu'anode d'accumulateurs...
21 février 2016
Les recherches sur les propriétés optiques des objets nanométriques de métaux nobles sont aujourd'hui très actives. En effet, si leur taille est très inférieure aux longueurs d'onde de la lumière visible, leurs électrons développent des oscillations à la fréquence de la lumière (modes plasmons).
30 août 2014
La maitrise du vieillissement des cellules photovoltaïques à base de semi-conducteurs est un enjeu important du fait de leur coût. Pour les missions spatiales lointaines, l'enjeu est encore plus important puisque c'est de la fiabilité et de la robustesse des performances de cette source d'énergie embarquée que dépend le succès de la mission.
11 septembre 2013
L'augmentation de la sensibilité des capteurs magnétiques et leur intégration ont permis d'augmenter considérablement la densité de stockage de l'information. Poursuivre ce mouvement est une forte incitation à réaliser des études explorant le comportement magnétique des nanostructures et nano-objets.
22 février 2013
T. Taurines et B. Boizot
Le confinement de déchets nucléaires à haute activité demande un stockage dans des conditions sûres et pérennes. Dans ce but, des structures vitrocéramiques, à la fois vitreuses et cristallines, ont été proposées. De telles structures peuvent en effet présenter de bonnes performances de stockage, associées au piégeage des éléments radioactifs dans la phase cristalline.
19 novembre 2012
Le Laboratoire des Solides Irradiés (École polytechnique/CEA/CNRS) inaugure, lundi 19 novembre, son nouvel accélérateur d’électrons SIRIUS (Système d'Irradiation pour l'Innovation et les Utilisations Scientifiques) à l’École polytechnique.
23 juin 2011
Contact : Giancarlo Rizza, Laboratoire des Solides Irradiés, Ecole Polytechnique
Du fait de leur taille, les nano-objets présentent des propriétés photoniques et plasmoniques remarquables que l'on cherche à exploiter. Diverses techniques permettent la réalisation de ces objets, et le façonnage de la forme des nano-objets au sein d'une matrice hôte (matériaux composites) est en particulier un moyen intéressant pour mieux maîtriser leurs propriétés physico-chimiques.
16 février 2008
A l’heure où nous nous interrogeons sur les réserves de combustibles fossiles de notre planète et sur les conséquences de l’effet de serre sur le réchauffement du globe, l’hydrogène est considéré comme le vecteur énergétique d’avenir pour les transports.
Publications HAL

Dernières publications PCN


Toutes les publications PCN dans HAL-CEA

Thèses
0 sujet /LSI/PCN

Dernière mise à jour :


 

Stages
Incorporation de MOF dans des membranes polymères nanoporeuses pour des applications en piézoélectricité
Insertion of MOF in nanoporous polymer membranes for piezoelectric applications

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30/05/2024

Durée

4 mois

Poursuite possible en thèse

oui

Contact

AUBRIT Florian
+33 1 69 33 45 44

Résumé/Summary
Ce sujet de stage, propose d'étudier l’insertion de matériaux métallo-, organiques, ou "Metal-Organic Frameworks" - MOF, au sein des membranes polymères PVDF, afin de former des matériaux nanocomposites. Ce type de composites MOF/polymères piézoélectriques a déjà fait l’objet d’études dans la littérature montrant de bonnes réponses piézoélectriques. Après une étape de synthèse de ces matériaux, leurs paramètres intrinsèques seront caractérisés en ayant recours à une large gamme de techniques physico-chimiques (FTIR, spectroscopie d’absorption UV-visible, SEM), et leur réponse piézoélectrique sera mesurée de manière à associer les résultats expérimentaux avec le modèle théorique déjà établi.
The aim of this internship is to study the insertion of metal-organic frameworks (MOFs) into PVDF polymer membranes to form nanocomposite materials. This type of MOF/polymer piezoelectric composite has already been studied in the literature, showing good piezoelectric responses. After synthesizing these materials, their intrinsic parameters will be characterized using a wide range of physico-chemical techniques (FTIR, UV-visible absorption spectroscopy, SEM), and their piezoelectric response will be measured to link the experimental results with the theoretical model already established.
Sujet détaillé/Full description
Au cours des dernières années, le PVDF (Polyfluorure de vinylidène) a montré son grand intérêt en tant que polymère piézoélectrique. En effet, ce matériau flexible peut être utilisé comme un générateur autonome, capable de convertir l’énergie mécanique provenant des vibrations du milieu environnant (équipement industriel, vent, flux d’eau, voiture, trains, …) en énergie électrique.

L’élaboration de nouvelles structures de piézogénérateurs polymères a marqué les recherches de cette dernière décennie [1] et la synthèse de nouveaux systèmes à base de polymères est en constant perfectionnement pour en optimiser les propriétés piézoélectriques.

Un des objectifs de notre groupe est de comprendre les paramètres régissant la piézoélectricité dans de tels polymères. En effet, la connaissance de ces systèmes nous permettrait à terme de prédire directement quelle configuration de paramètres utiliser afin d’atteindre la meilleure conversion d’énergie mécanique en énergie électrique. À cette fin, un modèle mécanique et physique a été développé pour les films commerciaux de PVDF (de 10 µm d’épaisseur). Ce modèle prend en compte les différents paramètres intrinsèques du matériau : permittivité diélectrique, module d’Young, coefficient de Poisson, épaisseur, constante piézoélectrique.
De manière à valider ce modèle, des mesures expérimentales sont prévues sur des membranes à base de polymère. Afin de contrôler les paramètres intrinsèques, nous proposons dans cette étude de modifier le polymère en le nanostructurant et en y incorporant des nano-objets afin de former des nanocomposites. Des travaux antérieurs du groupe ont déjà montré, au moyen de l’insertion de nanofils de nickel dans les matrices de PVDF, une augmentation de la réponse piézoélectrique d’un facteur 2.5 [2] et même d’un facteur 3.5 si une irradiation aux électrons est effectuée après formation du composite pour en modifier les paramètres mécaniques [3].

Dans ce projet de stage, nous proposons l’insertion de metal-organic frameworks (MOF) au sein des membranes PVDF afin de former des nanocomposites. En effet, de tels composites MOF/polymères piézoélectriques ont déjà fait l’objet d’études dans la littérature et ont montré de bonnes réponses piézoélectriques [4] [5]. Après la synthèse de ces matériaux, leurs paramètres intrinsèques seront caractérisés en ayant recours à une large gamme de techniques physico-chimiques, et leur réponse piézoélectrique sera mesurée de manière à associer les résultats expérimentaux avec le modèle théorique déjà établi.

Le/la stagiaire travaillera à la synthèse de membranes nanocomposites MOF/PVDF.
Dans un premier temps, il/elle se familiarisera avec les techniques de nanostructuration des membranes polymères (procédés d’irradiation, révélation chimique et fonctionnalisation des pores) déjà établies par le groupe.
Il/elle procèdera ensuite à l’incorporation de MOF dans les membranes en se basant sur divers procédés d’inclusion (greffages de cristaux de MOF, auto-assemblage des MOF dans la membrane, synthèse in situ). Bien que la littérature présente de nombreuses synthèses de MOF très variées, les travaux de notre groupe se sont concentrés sur le UiO-66(Zr), un MOF très étudié [7] [8]. Au cours de ce stage, le/la stagiaire se plongera dans la littérature pour en adapter les synthèses d’autres MOF pouvant présenter des propriétés d’intérêt (flexibilité, réponse piézoélectrique) en accords avec les objectifs de ce projet.

Pour chaque étape d’élaboration des membranes, le/la stagiaire devra effectuer la caractérisation des matériaux en utilisant une large gamme de techniques de caractérisation. Ces techniques pourront être des techniques de routine (FTIR, spectroscopie d’absorption UV-visible, SEM) mais également des techniques de plateforme (TEM, fluorescence). Il/elle sera instruit.e à des principes théoriques de chacune de ces techniques et recevra une formation sur les équipement d’analyse de routine (spectromètres, SEM).

En fonction de l’avancée du projet, en particulier de l’élaboration des procédés de synthèse, le/la stagiaire pourra être chargé.e de développer des technique de suivi (fonctionnalisation de marqueurs tels que des fluorophores ou des agents de contraste) afin de suivre précisément les différentes étapes de la nanostructuration du matériau.

En parallèle de ce travail expérimental sur les synthèses, des mesures de la réponse piézoélectrique des matériaux composites seront effectuées au laboratoire sur un banc d’expérience dédié. Ces résultats seront mis en regard des paramètres intrinsèques des matériaux.
RÉFÉRENCES :
[1] Zhang W et al., “Challenges and progress of chemical modification in piezoelectric composites and their applications.” Soft Sci 2023;3:19. http://dx.doi.org/10.20517/ss.2022.33
[2] Melilli, G. et al., “Enhanced Piezoelectric Response in Nanostructured Ni/PVDF Films” J. Mat. Sci. &
Eng. (2018) 7:2
[3] Potrzebowska, N. et al., “Mixing nanostructured Ni/piezoPVDF composite thin films with e-beam
irradiation: A beneficial synergy to piezoelectric response” Mat. Today Com. 28 (2021) 102528
[4] Neetu Prajesh et al., “Flexible Piezoelectric Nanogenerators Based on One-Dimensional Neutral Coordination Network Composites”, ACS Sustainable Chemistry & Engineering 2022 10 (30), 9911-9920 DOI: 10.1021/acssuschemeng.2c02296
[5] Sasmal, A. et al., “Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting” Nanomaterials 2023, 13, 1098. https://doi.org/10.3390/nano13061098
[6] Cuscito, O. et al., "Nanoporous PVDF membranes with selectively functionalized pores" NIM B 265
(2007) 309-313
[7] Tran My-An, “Hybrid MOF-solid-state nanopores to develop biosensors”, Thesis manuscript, Institut des Materiaux Poreux de Paris, February 2022
[8] X. Liu, «Metal-organic framework UiO-66 membranes» Chemical Science Engineering, vol. 14, n° %12, pp. 216-232, 2020. https://doi.org/10.1007/s11705-019-1857-5

COMPÉTENCES ACQUISES À LA FIN DU STAGE :
- Nanostructuration de films minces polymères suivant des procédés chimiques et physico-chimiques, et caractérisation de ces matériaux (spectroscopies)
- Voies de synthèse inorganiques et, en particulier, synthèses de metal-organic frameworks (MOF)
- Compréhension des procédés d’irradiation des matériaux polymères
- Connaissance des techniques de caractérisation des nanomatériaux et des défis posés par la caractérisation à l’échelle nanométrique
- Meilleure compréhension des propriétés piézoélectriques des matériaux polymères
- Connaissance des techniques de microscopie (SEM, TEM) et des techniques d’analyses associées (diffraction, EDX)
- Travail dans un groupe de recherche scientifique, tourné vers la physico-chimie des matériaux, sous l’encadrement d’une doctorante, dans un laboratoire académique pluridisciplinaire
PVDF (Polyvinylidene difluoride) has been a piezoelectric polymer of great interest in the recent years. This flexible material can be used as autonomous generators of micro captors, capable of converting mechanical energy from the vibration of the surrounding environment (industry, wind, waterflow, cars, trains) in electrical energy.
Designing new structures of polymer piezogenerators has been a trend for over a decade [1] and the synthesis of new piezopolymer-based systems is in constant development to improve their piezoresponse.
In our team, we are aiming to a better understanding of the parameters that rules the piezoelectricity in such polymers. This knowledge will allow us to directly predict the parameters settings in order to obtain the best conversion of mechanical energy in electrical energy. To this end, a mechanical and physical model was developed on commercial PVDF films (10 micron-thick), taking into account different intrinsic parameters of this material (dielectric permittivity, Young’s modulus, Poisson’s ratio, thickness, piezoelectric coefficient).

As a way to validate and extend this model, experimental measurements are planned on piezopolymer-based membranes. In order to tune the intrinsic parameters of these membranes, we propose a modification of the polymer through two complementary pathways: the nanostructuration (mechanical parameters) and the formation of composites (physical parameters). Our nanostructuration strategy relies on the creation of porous PVDF membranes and then on filling the pores with inorganic nano-objects to form nanocomposite materials. Previous works in the group, on the formation of Ni nanowires in PVDF matrices, already showed an improvement of the piezoresponse by a factor 2.5 [2] and by 3.5 when irradiated with electrons, in addition, to modify the mechanical parameters of the composite [3].

In this internship, we propose the insertion of metal-organic frameworks (MOF) within PVDF membranes to form nanocomposites. Indeed, such MOF/piezopolymer composites have already been studied in the literature and have shown promising piezoresponses [4] [5]. After synthesis, the nanocomposite membranes intrinsic parameters will be characterized using a wide range of physico-chemical techniques and the piezoresponse will be studied as a way to correlate the experimental results with the theoretical model.

He/she will, then, proceed to the inclusion of MOF within the membrane following various incorporation processes (grafting of MOF crystals, self-assembly of the MOF within the membrane, in situ synthesis). Although MOF synthesis is widely described in the literature, our team has only worked with the well-studied [7] [8] UiO-66(Zr) MOF. During this internship, the intern will research from literature and adapt the synthesis of other MOF species with properties of interest (flexibility, piezoelectric response) in accordance to the needs of the project.

For all experimental processes, the intern will have to perform complete characterization of the materials using a wide range of techniques. These techniques are declined in routine techniques (FTIR, UV-visible spectroscopy, SEM) but also analysis on platform equipment (TEM, fluorescence). He/she will be educated in the theoretical principles of all techniques, and will be formed to using the routine analysis equipment (spectrometers, SEM).
Depending on the timeline of the internship, and the advances in the synthesis development, the intern may also be charged to develop tracking techniques (grafting of tracking species such as fluorophores or contrast agents) in order to follow precisely the various steps of the nanostructuration.

In parallel of the experimental synthetic work, measurement of the composite piezoresponse will be performed on the laboratory home-made set-up. These results will be treated in regard to the intrinsic parameters of the materials, which will also be characterized using adapted techniques. A knowledge of the theoretical model will be provided so to help the understanding of the system.

REFERENCES:
[1] Zhang W et al., “Challenges and progress of chemical modification in piezoelectric composites and their applications.” Soft Sci 2023;3:19. http://dx.doi.org/10.20517/ss.2022.33
[2] Melilli, G. et al., “Enhanced Piezoelectric Response in Nanostructured Ni/PVDF Films” J. Mat. Sci. &
Eng. (2018) 7:2
[3]Potrzebowska, N. et al., “Mixing nanostructured Ni/piezoPVDF composite thin films with e-beam
irradiation: A beneficial synergy to piezoelectric response” Mat. Today Com. 28 (2021) 102528
[4] Neetu Prajesh et al., “Flexible Piezoelectric Nanogenerators Based on One-Dimensional Neutral Coordination Network Composites”, ACS Sustainable Chemistry & Engineering 2022 10 (30), 9911-9920 DOI: 10.1021/acssuschemeng.2c02296
[5] Sasmal, A et al., “Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting” Nanomaterials 2023, 13, 1098. https://doi.org/10.3390/nano13061098
[6] Cuscito, O. et al., "Nanoporous PVDF membranes with selectively functionalized pores" NIM B 265
(2007) 309-313
[7] Tran My-An, “Hybrid MOF-solid-state nanopores to develop biosensors”, Thesis manuscript, Institut des Materiaux Poreux de Paris, February 2022
[8] X. Liu, «Metal-organic framework UiO-66 membranes,» Chemical Science Engineering, vol. 14, n° %12, pp. 216-232, 2020. https://doi.org/10.1007/s11705-019-1857-5

SKILLS AT THE END OF THE INTERNSHIP:
- Nanostructuration of thin polymer films through physico-chemical and chemical process, and their characterization (spectroscopies)
- Inorganic synthetic routes and, especially, syntheses of metal-organic frameworks
- Understanding of the irradiation processes in polymer-based materials
- Knowledge of the characterization techniques of nanomaterials and of the challenges in characterizing at the nanoscale
- Better understanding of the piezoelectric property of piezopolymers
- Knowledge of the electron microscopy techniques (SEM, TEM) and related analysis (diffraction, EDX)
- Working in a research team, focused on materials physico-chemistry, under the supervision of a PhD student, in an academic pluridisciplinary laboratory.
Mots clés/Keywords
Chimie Organique/Inorganique
Organic/Inorganic Chemistry
Compétences/Skills
- Connaissances de base en chimie organique/inorganique et en science des matériaux (expérimental et théorique) - Caractérisations par techniques de spectroscopie - Lecture critique de la littérature scientifique - Compréhension écrite et communication de base en anglais
- Organic/Inorganic Chemistry and Material Science basic knowledge (experiment and theory) - Spectroscopy characterization - Critical reading of scientific literature - Reading comprehension and basic communication in English
Images
Equipe PCN \
Membranes poreuses
Irradiation par des ions lourds  (CIMAP)
Nouvelles membranes conductrices de protons \'biomimétiques\' pour piles à combustible \'PEMFC\'
Nouvelles membranes conductrices de protons \'biomimétiques\' pour piles à combustible \'PEMFC\'
Nouvelles membranes conductrices de protons \'biomimétiques\' pour piles à combustible \'PEMFC\'
Nouvelles membranes conductrices de protons \'biomimétiques\' pour piles à combustible \'PEMFC\'
Nouvelles membranes conductrices de protons \'biomimétiques\' pour piles à combustible \'PEMFC\'
Rôle des défauts structuraux sur la magnétorésistance de nanoconstrictions magnétique
Rôle des défauts structuraux sur la magnétorésistance de nanoconstrictions magnétique
Brevet : Dispositif et procédé de détection de contrainte mécanique, procédé de fabrication d\'un tel dispositif, et calibration.  Device and method for detecting mechanical stress, method for making such device and calibration
Façonner la matière à l\'échelle nanométrique par irradiation de faisceaux d\'ions
Façonner la matière à l\'échelle nanométrique par irradiation de faisceaux d\'ions
Façonner la matière à l\'échelle nanométrique par irradiation de faisceaux d\'ions
Inauguration de l\'accélérateur d\'électrons du projet Sirius
Inauguration de l\'accélérateur d\'électrons du projet Sirius
Inauguration de l\'accélérateur d\'électrons du projet Sirius
Etude de vitrocéramiques modèles riches en CaMoO4 pour le confinement de déchets de très haute activité
Etude de vitrocéramiques modèles riches en CaMoO4 pour le confinement de déchets de très haute activité
Etude de vitrocéramiques modèles riches en CaMoO4 pour le confinement de déchets de très haute activité
Etude de vitrocéramiques modèles riches en CaMoO4 pour le confinement de déchets de très haute activité
Vieillissement sous irradiation de cellules solaires pour des applications spatiales.
Vieillissement sous irradiation de cellules solaires pour des applications spatiales.
Vieillissement sous irradiation de cellules solaires pour des applications spatiales.
Brevet :  Procédé de fabrication d\'un nanogénérateur piézo-électrique, nanogénérateur piézo-électrique obtenu par ce procédé et dispositif comportant un tel nanogenerateur piezo-electrique
Nanostructures façonnées par irradiation pour un couplage lumière-plasmons efficace - Etude de la génération de seconde harmonique
Nanostructures façonnées par irradiation pour un couplage lumière-plasmons efficace - Etude de la génération de seconde harmonique
Nanostructures façonnées par irradiation pour un couplage lumière-plasmons efficace - Etude de la génération de seconde harmonique
Nanostructuration du graphène par irradiation d\'ions lourds
Nanostructuration du graphène par irradiation d\'ions lourds
Procédé photochimique d\'élaboration de nanoparticules bi-fonctionnelles
Détecter l’uranium à l’état de traces dans l’eau
Détecter l’uranium à l’état de traces dans l’eau
Des mouvements insoupçonnés au cœur des aimants
Impression 4D d\'actionneurs en polymères magnéto-actifs
Photodiodes à spin : un détecteur de lumière polarisée circulairement
Moduler les propriétés électroniques de β-Ga2O3 par irradiation aux électrons de haute énergie

 

Retour en haut