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Radiation induced processes at the atomic scale

* How is matter transformed under energy deposition?

* Physical properties and chemical reactions?



Energy deposition

4 keV electron track

* Energy deposition is highly inhomogenehous
* Transient species

* Hierarchy of events



Three stages description

1. Physical stage
t<101°s
collision of swift ions with molecules in the path
transport and interaction of secondary e, Auger effect

2. Chemical-physics stage
t~101>-101s
fragmentation, recombination with close partners

3. Chemical stage
t>>10125s
diffusion of radicals, chemical reactions

And further: biological events...



Time scales involved

Proton and electron transfers
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Molecular dynamics simulations

Numerical statistical mechanics

* Link macroscopic properties to structure and
dynamics at the atomic scale

 Computation and interpretation of experimental
data

e Experiments « in silico »

Principle

Numerical integration of Newton’s equation of motion for an assembly

of particles
Z F=ma

See: A. Boutin and R. Vuilleumier, Actu. Chimique 353-54, 61-65 (2011)



Early simulations

MANIAC 1 computer Metropolis

Monte-Carlo Simulation
Metropolis Rosenbluth Rosenbluth Teller Teller (1953) Equation of
state of 224 hard disks

Molecular Dynamics
* Fermi Pasta Ulam (1955) 64 coupled oscillators — Study of energy
transfer

e Alder and Wainwright (1957) Equation of state of hard spheres

* Gibbons et al. (1960) Dynamics of radiation damage



First simulation of a realistic material: simulation of
radiation induced damages in metallic Cu
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About a hundred trajectories, each a few 100’s femtosecond long, on an IBM 704



Initial momentum transfered to a specific Cu atom

100 eV collision
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Collision chains Vacancies and interstitials

Threshold for creating permanent defects: 25-30 eV



System description

Level of details

Quantum-classical simulations



System description

Level of details

Quantum-classical simulations

e Analytical modeling of forces

e Large scale simulations (up to 1 000 000’s atoms)
* No or limited chemistry



System description

Level of details

Quantum-classical simulations

L.

Quantum chemical calculations

e Ab initio Molecular Dynamics (forces from quantum
calculation)

* Very high computational cost

Allow bond breaking and bond formation



System description

Level of details

Quantum-classical simulations

* Advantages from both quantum and classical simulations

* Difficulty of combining two levels of description
* Choice of the « quantum » region



Simulation of radiolysis

from micro (femtochemistry) to macro (primary and final species)

Elementary chemical acts
Models
@ .
&€ Quantum mechanics validation
Reactants and products diffusion
Classical dynamics
Parameter
extraction
Global reaction rates
Radiolytic yields

meso/macro modelling
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Two examples

Solvated electron and its reactivity

Ultrafast dissociation of ionized molecules



Two examples

Solvated electron and its reactivity



Solvated electron

lonizing radiation (X, vy, e7)

m Primary phenomena
O lonisation

MAA— MY + e

— Properties of solvated electron

- Strong reductant : E°=-2,8 V,,in water
— Oxydoreduction reaction

— Electron transfer
— Interaction with cations .



Experiments

lonizing radiation (X, vy, e7)

* Picoseconde pulsed radiolysis
* ELYSE: Centre de cinétique rapide, Orsay

synchronisation

» Femtosecond laser

Picosecond electron beam <




Solvated electron in water — electron in a cavity

Absorption spectrum of

hydrated water
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Diffusion of solvated electron
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Elementary chemical acts with solvated electron

Ag* Reduction in confined media

T T T

(AQ")sovated —> HOpPping —  End of solvant reorganization — (Ag°)

solvaté

~150fs  ~0.8 ps (exp: kgt < 1 ps)

Confinement -> slowing down of solvent reorganization






Reaction of hydrogen atom with OH-
H -+ OH — e~ + HQO

Studied with ab initio Molecular Dynamics

Proton transfer reaction

Metastable configuration



Reaction of hydrogen atom with OH: mechanism

J.-P. Renault et al., JPC A 112, 7027 (2008)



Reaction of hydrogen atom with OH™: e” orbital




Two examples

Ultrafast dissociation of ionized molecules



Ultrafast dissociation of ionized biomolecules

* High ionization density in swift heavy ion tracks (Art8*, C®*; v=1/3c)
e K-shell ionization

e Multiple ionization (M?*, M3+, ...) represent about 10% of collision events
but most lethal events

e Primary species formed?

e Liquid water : Important amount of HO, / O, radicals & O, molecules (very
harmful for the cell)

e Direct or indirect mechanisms: are damages caused by water ionization
that produces oxydative stress or by direct ionization of DNA?



Modelling of the chemical-physics stage: double

lonisations

e Multiple ionization are not negligeable at high LET (Linear Energy Transfer)

e Very damaging

fraction
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(B. Gervais et al.)

* |t was shown (A. Chetioui et al.) that cell death is correlated with K-shell

ionization

double ionisation after Auger effect

Simulation of the fragmentation induced by double ionization or core hole of water

and biomolecules



Propagation of electron density by
Time-Dependent Schrodinger equation

* Electrons are out of equilibrium

* Explicit treatment of electron dynamics by time-dependent
Schrodinger equation:

0

1
"ot

1
= —§V2¢z‘ + 0s(7, 1)@y

* Mean field (Ehrenfest) coupling with atomic motion

where the orbitals depend on positions and time

Time-dependent density functional theory framework

The time-dependent potential is a functional of the time-
dependent density



H,0%* coulomb explosion in liquid : TD-DFT in liquid water

Evolution with time of the two O-H distances of the ionized H,0%* water molecule
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Fragmentation leads to one O and two H* atoms & recombination
with the surrounding solvent : H,0* - 2H,0* + O

lonization from inner-shells : faster time-scale



Formation of atomic oxygen

e Highly reactive
e Born-Oppenheimer MD leads quickly to the formation of H,0,

e In presence of OH radical leads to the superoxyde HO,



Direct effects of ionization : gas phase Uracil?*

Hypothesis : remove 2 electrons from the inner shell
molecular orbitals of neutral Uracil (most violent events)
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Occupied Kohn-Sham Orbitals

Initial ionisation is either
localised on C=0 groups or partially delocalised on the ring



lonisation from C=0
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Follow-up with adiabiatic dynamics

Later along the trajectory: electrons are assumed to be back at

equilibrium with the atomic positions (ground state)

Mass = 43
Mass = 41 Charge = 0.757
Charge = 1.018 Ekin = 5.65E-4 eV

Mass = 26
Charge =0.916

Mass = 43
Charge =0.522

Mass = 15 \ /
=-0.084
Charge Mass = 28
Charge = 0.646 \

v

up to 386 fs of dynamics \ /

N\ / Mass = 28
Charge = 0.225
Ekin = 6.64E-4 EV



Comparison with experiment

Uracil in gas phase collision with
protons in the 25 keV— 100 keV
energy range
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lonisation from C=0

o After 31.20 fs of TD-DFT dynamics
o Loss of an oxygen atom in the liquid
e Oxygen negatively charged, just like

after the Coulomb explosion of
H,0%" in pure liquid water




Conclusions

* Computer experiments: different media (water, porous materials),
different conditions...

e Radiation induced chemistry has always been attractive to
molecular simulations

* Primary species and their reactivity

e Radiation chemistry is a stringent test of models and level of
description

* Challenge for molecular simulations: multiple levels of description

* Molecular simulations are one part of the modelling of radiation
chemistry
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