Simulation of molecular processes in radiation chemistry

Anne Boutin & Rodolphe Vuilleumier

Département de Chimie Ecole Normale Supérieure

Radiation induced processes at the atomic scale

- How is matter transformed under energy deposition?
- Physical properties and chemical reactions?

Energy deposition

- Energy deposition is highly inhomogenehous
- Transient species
- Hierarchy of events

Three stages description

1. Physical stage

t < 10⁻¹⁵ s

collision of swift ions with molecules in the path transport and interaction of secondary *e*⁻, Auger effect

2. Chemical-physics stage $t \sim 10^{-15} \cdot 10^{-12} \text{ s}$ fragmentation, recombination with close partners

3. Chemical stage

t >> 10⁻¹² s

diffusion of radicals, chemical reactions

And further: biological events...

Time scales involved

Molecular dynamics simulations

Numerical statistical mechanics

- Link macroscopic properties to structure and dynamics at the atomic scale
- Computation and interpretation of experimental data
- Experiments « in silico »

Principle

Numerical integration of Newton's equation of motion for an assembly of particles

$$\sum \vec{F} = m\vec{a}$$

See: A. Boutin and R. Vuilleumier, Actu. Chimique 353-54, 61-65 (2011)

Early simulations

MANIAC 1 computer

Metropolis

Monte-Carlo Simulation

Metropolis Rosenbluth Rosenbluth Teller Teller (1953) Equation of state of 224 hard disks

Molecular Dynamics

- Fermi Pasta Ulam (1955) 64 coupled oscillators Study of energy transfer
- Alder and Wainwright (1957) Equation of state of hard spheres
- Gibbons et al. (1960) Dynamics of radiation damage

First simulation of a realistic material: simulation of radiation induced damages in metallic Cu

PHYSICAL REVIEW

VOLUME 120, NUMBER 4

NOVEMBER 15, 1960

Dynamics of Radiation Damage*

J. B. GIBSON, A. N. GOLAND,[†] M. MILGRAM, AND G. H. VINEYARD Brookhaven National Laboratory, Upton, New York (Received July 14, 1960)

 $u(r) = Ae^{-Br}$

About a hundred trajectories, each a few 100's femtosecond long, on an IBM 704

Initial momentum transfered to a specific Cu atom

100 eV collision

Collision chains

Vacancies and interstitials

Threshold for creating permanent defects: 25-30 eV

- Analytical modeling of forces
- Large scale simulations (up to 1 000 000's atoms)
- No or limited chemistry

- Quantum chemical calculations
- Ab initio Molecular Dynamics (forces from quantum calculation)
- Very high computational cost
- Allow bond breaking and bond formation

- Advantages from both quantum and classical simulations
- Difficulty of combining two levels of description
- Choice of the « quantum » region

Simulation of radiolysis

from micro (femtochemistry) to macro (primary and final species)

Two examples

Solvated electron and its reactivity

Ultrafast dissociation of ionized molecules

Two examples

Solvated electron and its reactivity

Ultrafast dissociation of ionized molecules

Solvated electron

Primary phenomena Ionisation

M

Properties of solvated electron

- Strong reductant : $E^{\circ} = -2.8 V_{ENH}$ in water
 - Oxydoreduction reaction
 - Electron transfer
 - Interaction with cations

Experiments

Picosecond electron beam

• Picoseconde pulsed radiolysis

• ELYSE: Centre de cinétique rapide, Orsay

synchronisation

Femtosecond laser

Solvated electron in water – electron in a cavity

Diffusion of solvated electron

Elementary chemical acts with solvated electron

 $(Ag^+)_{solvated} \rightarrow Hopping \rightarrow End of solvant reorganization \rightarrow (Ag^0)_{solvate'}$ ~150 fs ~0.8 ps (exp: k_{ET} < 1 ps)

Confinement -> slowing down of solvent reorganization

Reaction of hydrogen atom with $OH^ H^- + OH^- \rightarrow e^- + H_2O$

Studied with ab initio Molecular Dynamics

Proton transfer reaction

Metastable configuration

Reaction of hydrogen atom with OH⁻: mechanism

J.-P. Renault et al., JPC A **112**, 7027 (2008)

Reaction of hydrogen atom with OH⁻: e⁻ orbital

Two examples

Solvated electron and its reactivity

Ultrafast dissociation of ionized molecules

Ultrafast dissociation of ionized biomolecules

- High ionization density in swift heavy ion tracks (Ar¹⁸⁺, C⁶⁺; v=1/3c)
- K-shell ionization
- Multiple ionization (M²⁺, M³⁺, ...) represent about 10% of collision events but most lethal events
- Primary species formed?
- Liquid water : Important amount of HO₂ / O₂⁻ radicals & O₂ molecules (very harmful for the cell)
- Direct or indirect mechanisms: are damages caused by water ionization that produces oxydative stress or by direct ionization of DNA?

Modelling of the chemical-physics stage: double ionisations

• Multiple ionization are not negligeable at high LET (Linear Energy Transfer)

- Very damaging
- It was shown (A. Chetioui et al.) that cell death is correlated with K-shell ionization

double ionisation after Auger effect

Simulation of the fragmentation induced by double ionization or core hole of water and biomolecules

Propagation of electron density by Time-Dependent Schrödinger equation

- Electrons are out of equilibrium
- Explicit treatment of electron dynamics by time-dependent Schrödinger equation:

$$i\hbar\frac{\partial\phi_i}{\partial t} = -\frac{1}{2}\nabla^2\phi_i + v_s(\vec{r},t)\phi_i$$

• Mean field (Ehrenfest) coupling with atomic motion

where the orbitals depend on positions and time

Time-dependent density functional theory framework The time-dependent potential is a functional of the timedependent density

H₂O²⁺ coulomb explosion in liquid : TD-DFT in liquid water

Evolution with time of the two O-H distances of the ionized H_2O^{2+} water molecule

Fragmentation leads to one O and two H⁺ atoms & recombination with the surrounding solvent : $H_2O^{2+} \rightarrow 2H_3O^+ + O$

Ionization from inner-shells : faster time-scale

Formation of atomic oxygen

- Highly reactive
- Born-Oppenheimer MD leads quickly to the formation of H_2O_2
- In presence of OH radical leads to the superoxyde HO₂

Direct effects of ionization : gas phase Uracil²⁺

localised on C=O groups or partially delocalised on the ring

Ionisation from C=O

Follow-up with adiabiatic dynamics

Later along the trajectory: electrons are assumed to be back at equilibrium with the atomic positions (ground state)

Comparison with experiment

Uracil in gas phase collision with protons in the 25 keV– 100 keV energy range

Coincidence diagram of charged fragments:

P Moretto-Cappelle's Group - Toulouse, France

Ionisation from C=O

- After 31.20 fs of TD-DFT dynamics
- Loss of an oxygen atom in the liquid
- Oxygen negatively charged, just like after the Coulomb explosion of H₂O²⁺ in pure liquid water

Conclusions

- Computer experiments: different media (water, porous materials), different conditions...
- Radiation induced chemistry has always been attractive to molecular simulations
- Primary species and their reactivity
- Radiation chemistry is a stringent test of models and level of description
- Challenge for molecular simulations: multiple levels of description
- Molecular simulations are one part of the modelling of radiation chemistry

Acknowledgements

PhD, post-docs, LCP, Orsay: Cédric Nicolas, François-Xavier Coudert, Riccardo Spezia, Kafui Tay

LCP & Elyse, Orsay:

Merhan Mostafavi, Jean-Louis Marignier, Isabelle Lampre, Pierre Archirel Bernard Lévy Jacqueline Belloni

ENS Paris: Daniel Borgis

CEA Saclay: Jean-Philippe Renault, Stanislas Pommeret

JAEA, Japan: Yosuke Katsumura, Mingzhang Lin

UPMC

Marie-Françoise Politis, Marie-Anne Hervé du Penhoat, Alain Touati

University of Evry Marie-Pierre Gaigeot

Caen Benoît Gervais

Toulouse Patrick Moretto-Capelle

Madrid

Pablo Lopez-Tarifa, Manuel Alcami, Fernando Martin

Lausanne Ivano Tavernelli