Symposium; *Radiation Chemistry: the Marie Curie's heritage* November 15 and 16, 2011, Maison de la Chimie, Paris, France

Water Radiolysis under Extreme Condition

 Y. Katsumura^{1,3}, M. Lin², Y. Muroya¹, Y. Yan³,
 M. Mostafavi⁴, J. Meesungnoen⁵ and J.-P. Jay-Gerin⁵
 ¹Nuclear Professional School, The University of Tokyo
 ²Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency
 ³ Department of Nuclear Engineering and Management, The University of Tokyo
 ⁴ LCP/ELYSE, Universite' Paris-Sud 11
 ⁵ Department of Nuclear Medicine and Radiobiology, University of Sherbrooke

Content

- (1) Brief history on radiolysis of water
 - & High temperature water radiolysis
- (2) Experimental
- (3) Observation of energy minimum for the absorption peak of e-_{sol} at fixed density
 (4) Ultrafast pulse radiolysis study at HTHP
- (5) Summary
- (6) Future perspectives

1895 Wilhelm Conrad Röntgen

X-rays

1896 Antoine Henri Becquerel

to - there for . Suffed Vicket During & it to to the internet. Boperson . Can't be being them -Boperson to the G By . I all for the form hillow G & -Directope "G Parma.

radioactivity

Maria Skłodowska-Curie and Pierre Curie: Ra 1898

J. Belloni,

"Historic landmarks in radiation chemistry since early observations by Marie Skłodowska-Curie and Pierre Curie" *NUKLEONIKA*, *56*, 201-211 (2011)

C. R Acad. Sci. Paris, 1899, 129, 823

CHIMIE. — Effets chimiques produits par les rayons de Becquerel. Note de M. P. CURIE et de M^{me} CURIE, présentée par M. Becquerel.

« Les rayons émis par les sels de baryum radifères très actifs sont capables de transformer l'oxygène en ozone.

C. R Acad. Sci. Paris, 1901, 132, 768

Sur la radio-activité induite et les gaz activés par la radium.

The release of **hydrogen** and **oxygen** by **aqueous solutions** of radium salt was observed by Pierre Curie and Andre Debierne.

 $H_2^+O + OH_2 = H_2O + OH$ $H_2^-O + H^+ = H + H_2O$ $2OH = H_2O_2$

First observation of radiolysis of water !!

Contradiction

1901 Curie & Debierne
Continuous gas formation
in radium salt solution
→ decomposition of water

1920s

No gas formation in water irradiated with X-ray → apparent no decomposition

Different types of radiation have different effects toward water decomposition

G-values	-H ₂ O	e⁻ _{aq}	ОН	Н	H ₂ O ₂	H ₂	HO ₂
γ -ray	4.1	2.7	2.8	0.56	0.68	0.45	~0.01
α -ray	2.65	0.06	0.24	0.21	0.985	1.3	0.22

Discovery of hydrated electron

Nature 197, 45 (1963)

J. W. Boag and E. D. Hart

Absorption Spectra of 'Hydrated' Electron

Fig. 1. Transient absorption in 0.5 M aqueous solution of sodium carbonate. a, Densitometer trace of part of a spectrogram taken through unirradiated solution (the peaks are due to the sensitizers in the emulsion); b, densitometer trace of same part of spectrum taken simultaneously with a 2 μ sec electron pulse (c. 4 k.rads); c, difference curve

J. Am. Chem. Soc., 84, 4090-4095 (1962)

The pulse radiolysis is

a powerful and useful technique.

Nature 197, 47 (1963)

J. P. Keene

Optical Absorption in Irradiated Water

At the Harrogate Congress in August, 1962 Dr. Keen reported his absorption measurements using photomultiplier and oscilloscope. The paper was submitted in August, 1962 but not published until 5 January, 1963.

Solvated electrons (e_{sol}⁻)

L. M. Dorfman and J. F. Galvas, in *Radiation Research. Biomedical, Chemical and Physical Perspectives*, 1975 Hydrated electron at elevated temperatures - subcritical and supercritical water -

Hydrated electron at high temperatures

COPPER

Temperature range -4 to 90 °C for H₂O

The absorption band of hydrated electron shifts to lower energy range (longer wavelength) with increasing of temperature.

Temperature range 203 to 390 °C for D₂O

Hart et al; J. Phys. Chem., 75, 2798 (1971)

Water chemistry in 1980-1990s

Hydrogen injection, NMCA (Noble Metal Chemical Addition),

Canada: Dixson, Elliot, Quellette, StuartDenmark: SehestedFrance: Hickel, PastinaJapan: Ishigure, Shiraishi, KatsumuraSweden: ChristensenUK: Burns, Buxton, Sims, Stuart

Phase diagram of water

Supercritical Water Cooled Reactor (SCWR)

- High thermal efficiency (≥44%)
- Compact, small volume and simple structure
- Proven technologies (LWRs & SCW fossil plants)

→ highly ranked in economics

Proposed by Prof. Oka in 1989 (Waseda Univ.)

Fig. 2. (a) Time profiles of e_{aq}^- at 1100 nm in D₂O. 46 Gy/pulse. a. 25°C, 1 atm; b. 100°C, 100 atm; c. 250°C, 200 atm; d. 350°C, 250 atm; e. 400°C, 350 atm. (b) Absorption spectra of e_{aq}^- . Conditions for curves 1–5 are the same as for curves a–e in (a). Inset: Spectra of e_{aq}^- at 400°C under pressures of 300 and 400 atm.

Wu, Katsumura, Muroya and Terada; *Chem. Phys. Lett.*, **325**, 531–536 (2000) The normalized absorption spectra of the hydrated electron in D_2O in the presence of 0.2 M *tert-butyl* alcohol at different temperatures.

Lin, Kumagai, Lampre, Coudert, Muroya, Boutin, Mostafavi, and Katsumura *J. Phys. Chem. A*, **111**, 3548 (2007)

Experimental

Experimental set-up

Window structure

Observation of energy minimum for the absorption peak of e⁻aq

Hydrated electron in water

The normalized absorption spectra of the hydrated electron in D_2O in the presence of 0.2 M *tert-butyl* alcohol at different temperatures.

H₂O	D ₂ O
Tc: 374.1 °C	Tc: 370.7 °C
Pc: 22.1 MPa	Pc: 21.67 MPa

Two findings

(1) The absorption spectra of the hydrated electron shift to lower energy (longer wavelength) with increasing temperature.

(2) The decay of the hydrated electron becomes faster with increasing temperature.

> M. Lin, Y, Kumagai, I. Lampre, F.-X. Coudert, Y. Muroya, A. Boutin, M. Mostafavi, and Y. Katsumura *J. Phys. Chem. A*, 111, 3548 (2007)

Why minimum?

J. Meesungnoen, J. Chem. Phys., 129, 114511 (2008)

Temperature: structure breaking (decrease the potential energy) Pressure: structure making (increase the potential energy)

Solvated electron in methanol at fixed density

EAmax as the function of temperature in sub- and supercritical methanol at two fixed densities

Having minimum! But not at T_c! Due to water?!

Water content effect on the E_{max} in sub- and supercritical methanol at fixed density 0.55g/cm³.

- Yes! For dehydrated MeOH, at T_c!
- More water, T_{min} increases.
- Two methods are consistent.

Y. Yan, Y. Katsumura, M. Lin, Y. Muroya, S. Yamashita, K. Hata, J. Meesungnoen, and J.-P. Jay-Gerin, *Can. J. Chem.*, 88: 1026–1033 (2010)

Ultrafast Pulse Radiolysis System for HTHP experiment

Re-evaluation of G(e_{aq}) at ps time

First HTHP ps pulse radiolysis (in 2008)

HTHP ultrafast pulse radiolysis system (2009)

HTHP ultrafast pulse radiolysis system (2009)

Measurement from ns to ps (2009)

Time dependent g-values of e⁻aq

- •The decay in a few ns slightly slower in D_2O than H_2O (ca.5%)
 - Tendency is similar to previous reports

(Chenovitz 1988, Jonah 1990, Bartels 2001)

Temperature dependent decay of e-aq

Spur reactions	rate const. /10 ¹⁰ M ⁻¹ s ⁻¹
$e_{aq}^{-} + e_{aq}^{-} \rightarrow H_2 + 2OF$	l ⁻ 0.54
$e_{aq}^{-} + OH \rightarrow OH^{-}$	3.0
$e_{aq}^{-} + H_3O^+ \rightarrow H + H_2O^+$	2.3
$e_{aq}^{-} + H \rightarrow H_2 + OH^{-}$	2.5
$H + H \rightarrow H_2$	1.3
$OH + OH \rightarrow H_2O_2$	0.53
$OH + H \rightarrow H_2O$	3.2
$H_3O^+ + OH^- \rightarrow 2H_2O$	14.3

Spur reactions for decreasing g(e-ag)

$$\begin{array}{ll} e^-_{aq} + OH \rightarrow OH^- & (1) \\ e^-_{aq} + H_3O^+ \rightarrow H + H_2O & (2) \\ e^-_{aq} + e^-_{aq} + 2H_2O \rightarrow H_2 + 2OH^- & (3) \end{array}$$

1/T(K)

A.J.Elliot, D.M. Bartels et al, AECL report, 2009

Temperature dependent decay of e-aq

Possible reactions for decreasing g(e-aq)

$$\begin{array}{ll} e^-_{aq} + OH \rightarrow OH^- & (1) \\ e^-_{aq} + H_3O^+ \rightarrow H + H_2O & (2) \\ e^-_{aq} + e^-_{aq} + 2H_2O \rightarrow H_2 + 2OH^- & (3) \end{array}$$

The reaction (2) plays an important role

Monte Carlo calculation in collaboration with Sherbrooke Gr. (Prof. Jay-Gerin)

Thermalization distance of e_{aq} at 300 °C

Time dependent g(e⁻_{aq}) in H₂O up to 300°C; comparison with Monte-Carlo

Time dependent g(e⁻_{aq}) in H₂O up to 300°C; comparison with Monte-Carlo

Contribution of spur reactions

Time dependence

Pressure (density) dependence at 400°CPres.: $40 \rightarrow 25$ [MPa]in SCW

Density effects on the G(60ps) at 400°C

• Picosecond yield showed strong density dependence - Consistent with nanosecond exp. using scavenger

Pressure dependence of $g(e_{aq})$ in D₂O at 400°C

Summary

We have investigated pulse radiolysis study on water and alcohols at elevated temperatures up to 400°C.

(1)Solvated electrons in alcohols at elevated temperatures

(2) Observation of energy minimum for the absorption peak of e-_{sol} at fixed density

(3) Ultrafast pulse radiolysis study at HTHP

- 1. Optical spectra, fast spur reaction kinetics
- **2.** Isotope effects in H_2O and D_2O exists, but small.
- **3. Monte Carlo simulation**
- 4. Initial yield of e⁻_{aq} strongly depends on pressure (density) at supercritical state at 400°C

5. Good agreement between scavenging evaluation and direct observation

Future perspectives

Higher *temperatures* above 400, 500 and 600 °C Higher *pressures* above 40 MPa -> GPa Higher *time resolution*: ps -> fs

Supercritical water

- Iower hydrogen bonds
- clustering structure
- beyond the frame of

the traditional water radiolysis

-> new approaches s.

Quantum Calculation, Molecular Dynamics

Configurational snapshot of a pure 2D Lennard-Jones SCF at *T*_r≈1.17 and r_r≈0.86.
 S. C. Tucker, et al. *JPC B* 1998, *102*, 2437

Acknowledgement

 Univ. of Tokyo Prof. Mitsuru Uesaka Dr. Akira Sakumi Mr. Toru Ueda

- University of Paris-sud
 Dr. Vincent De Waele
- University of Sherbrooke
 Mr. Rethee Mesaat
- JASRI/Spring-8

Dr. Hiromitsu Tomizawa

• We also thank financial support from the GCOE program and Grand-in-Aid for Scientific Research.

Thank you for your kind attention