Experimental and theoretical study of the degradation of malonamide extractant molecules under ionizing radiation

<u>Sophie Le Caër¹</u>, Georges Vigneron¹, Dominique Guillaumont², Laurence Berthon², Nicole Zorz² and Philippe Moisy²

GNR

¹CEA, DSM, IRAMIS, SIS2M UMR 3299 Laboratoire de Radiolyse F-91191 Gif-sur-Yvette, France ²CEA, DEN, DRCP F-30207 Bagnols-sur-Cèze, France

Context

Liquid-liquid extraction in the context of nuclear waste separation.

Solvent degradation: chemistry, radiolysis....

- Change of physico-chemical, chemical properties.....

check the robustness of the extractant solution submitted to radiolysis

Effect of the radiolysis on extractant molecules (malonamides) diluted in organic phase (octane).

Methodology

IR spectrum of TEMA: experiment/simulation comparison

The deconvolution of the C=O stretching band is different in the initial malonamide and in the irradiated one, indicating that products absorbing in this spectral region are formed upon irradiation.

Different bond cleavages in TEMA

 $\begin{array}{ll} & \underline{\text{Cleavage of the C-N bond:}} \\ & R_2 \text{NCOCH}_2 \text{CONR}_2 \rightarrow \text{R} \cdot + \cdot \text{RNCOCH}_2 \text{CONR}_2 & (\text{R1}) \\ & R_2 \text{NCOCH}_2 \text{CONR}_2 \rightarrow R_2 \text{N} \cdot + \cdot \text{COCH}_2 \text{CONR}_2 & (\text{R2}) \end{array}$

 $\frac{\text{Cleavage of the C-C bond:}}{\text{R}_2\text{NCOCH}_2\text{CONR}_2 \rightarrow \text{R}_2\text{NCO'} + \cdot\text{CH}_2\text{CONR}_2} \quad (\text{R3})$

 $\frac{\text{Cleavage of the central C-H bond:}}{\text{R}_2\text{NCOCH}_2\text{CONR}_2 \rightarrow \text{R}_2\text{NCOCHCONR}_2 \cdot + \cdot \text{H}}$ (R4)

with $R = C_2 H_5$

Bond dissociation energy	Reaction 1 (kJ.mol ⁻¹)	Reaction 2 (kJ.mol ⁻¹)	Reaction 3 (kJ.mol ⁻¹)	Reaction 4 (kJ.mol ⁻¹)
C ₂ H ₅ (TEMA)	388	416	362	408

The **cleavage of the C-C bond** is thermodynamically more favorable than the other bond cleavages.

Assignment of the observed IR bands

Experimentally, after irradiation, two positive bands are detected at 1630 and 1728 cm⁻¹ in the 1500-1800 cm⁻¹ spectral region.

Behaviour of TEMA under irradiation

ESI-MS spectra of TEMA after 10 MeV electrons irradiation

The addition of the octyl group takes place on the carbon in the ethyl group in alpha position of the nitrogen atom

ESI-MS² spectrum of a TEMA solution in octane after radiolysis.

ESI-MS of TEMA after 10 MeV electrons irradiation

Focus on 110 < *m*/*z* < 220

Behaviour of TEMA under irradiation

The major processes are recombination reactions. ESI-MS experiments evidence the addition of an octyl group (arising from the solvent).

A band is detected in the spectral region of malonamide which is consistent with the formation of a new malonamide.

Behaviour of DMDBTDMA under irradiation: In situ detection by infrared spectroscopy

diluted in octane

Different bond cleavages in a compound similar to DMDBTDMA

G3 (MP2) calculations Gaussian 03 $\begin{array}{ll} \underline{\text{C-N bond cleavage:}} \\ R_2 \text{NCOCHR'CONR}_2 \rightarrow \text{R} \cdot + \cdot \text{RNCOCHR'CONR}_2 & (\text{R1}) \\ R_2 \text{NCOCHR'CONR}_2 \rightarrow R_2 \text{N} \cdot + \cdot \text{COCHR'CONR}_2 & (\text{R2}) \end{array}$

<u>C-C bond cleavage:</u>

 $R_2 NCOCHR'CONR_2 \rightarrow R_2 NCO' + \cdot CHR'CONR_2 \quad (R3)$

<u>C-C (on the lateral chain) bond cleavage:</u> $R_2NCOCHR'CONR_2 \rightarrow R' + R_2NCOCH CONR_2$ (R4)

with $R = CH_3$ $R' = C_2H_5$

Bond dissociation energy	Reaction 1 (kJ.mol ⁻¹)	Reaction 2 (kJ.mol ⁻¹)	Reaction 3 (kJ.mol ⁻¹)	Reaction 4 (kJ.mol ⁻¹)
	373	385	339	354

The cleavage of the C-C bond is thermodynamically more favorable than the other bond cleavages. The C-C bond is weakened as compared to the TEMA case (362 kJ.mol⁻¹).

<u>1690 cm⁻¹.</u>

Behaviour of DMDBTDMA under irradiation

Behaviour of DMDOHEMA under irradiation

Conclusions

• In situ infrared experiments have enabled to track the reactivity of malonamides under irradiation. The spectral modifications observed have been explained by means of <u>quantum chemistry</u> calculations and also with the help of ESI-MS experiments.

• Even if the behaviour of malonamides under irradiation is complex, it is possible to evidence a different behaviour according to the structure of the malonamide:

▶ in the case of TEMA, the major channel is a recombination reaction.

▶ in the other cases, we observe the preferential cleavage of the central C-C bond, which is consistent with the smallest bond energy calculated: the central C-C bond is weakened as compared to TEMA.

Outlook: to go into the study of reaction mechanisms with *in situ* time-resolved experiments.

See poster by Manjusha Shirdonkhar