Heavy Ion Radiolysis from Curie to Present

Jay LaVerne Radiation Laboratory and Department of Physics University of Notre Dame

> Simon M. Pimblott School of Chemistry University of Manchester

Marie Skłodowska Curie

Nobel Prize in Chemistry 1911

Radium and Polonium (1898)

²¹⁰Po => ²⁰⁶Pb + α (5.4 MeV, t_{1/2} = 138 days) ²²⁶Ra => ²²²Rn + α (4.9 MeV, t_{1/2} = 1601 years)

First heavy ion sources

Early Studies using Radium Sources

P. Curie and A. Debierne, Sur la radio-activité induite et les gas activés par le radium, Compt. Rend. 132, 768-70 (1901)

W. Ramsay and F. Soddy, Experiments in radioactivity, and the production of helium from radium, Proc. Roy. Soc. 72, 204-7 (1903)

W. Ramsay, The chemical action of the radium emanation. Part I. Action on distilled water, J. Chem. Soc. London 91, 931-42 (1907)

A. T. Cameron and W. Ramsay, The chemical action of radium emanation. Part III. On water and certain gases, J. Chem. Soc. London 93, 966-92 (1908)

M. Kernbaum, Sur la décomposition de l'eau par divers rayonnements, Radium, 7, 242 (1910)

W. Duane and O. Scheuer, Décomposition de l'eau par les rayons α Compt. Rend. 156, 466-467 (1913)

W. Duane and O. Scheuer, Recherches sur la décomposition de l'eau par les rayons α , Radium 10, 33-46 (1913)

Decomposition of Radium and Water

224
Ra => 220 Rn + α

$^{224}Ra + H_2O = ^{220}Rn + \alpha (He) + H_2 + ?$

$2H_2O \longrightarrow H_2O_2 + H_2$

Observe only molecular products

O. Risse, On the radio-photolysis of hydroperoxide, Z. Physik. Chem.
A140, 133 (1929)
H. Fricke and E. R. Brownscombe, Inability of x-rays to decompose water, Phys. Rev. 44, 240 (1933)

$$\begin{array}{cccc} H_2O & & & & & & \\ H_2O^{act} & & \rightarrow & & \\ H_2O^{act} + reactant & \rightarrow & product \end{array}$$

J. Weiss, Radiochemistry of aqueous solutions, Nature 153, 748 (1944)

$$H_2O \land \land \rightarrow \bullet H + \bullet OH$$

Acceptance of radical chemistry

LET Effects in Water

A. O. Allen, "The Radiation Chemistry of Water and Aqueous Solutions", Van Nostrand, Princeton, p. 58, 1961.

First summary of LET effects

Cloud Chamber Tracks

β-particle: C. T. R. Wilson *Proc. Roy. Soc. A*, **1923**, *104*, 192

proton: P. I. Dee Proc. Roy. Soc. A, 1932, 136, 727

α-particle: C. T. R. Wilson Proc. Cam. Phil. Soc. A, 1922, 21, 405

Various particles have tracks that look different.

Visualization of Tracks

Electron track made of isolated clusters with few reactive species in each.

Differences in 10 keV Track Segments at 1 ps

Black : e_{aq}^{\dagger} Red : $H_{3}O^{\dagger}$ Green : OH Blue : H Cyan : H_{2} Magenta : OH⁻ Yellow : $H_{2}O_{2}$ Dark yellow : $O(^{3}P)$

Modern codes give "realistic" track structures.

10 MeV ¹H

Radiation Effects due to Nuclear Power

Transuranics are α -particle emitters. Must deal with legacy of weapons and reactors.

Heavy Ion Radiolysis in Space

solar/cosmic radiation: H, He, etc. planetary particles

Applications in space exploration and origin of life.

Health / Therapy Effects due to Track Structure

Precise dose delivery with heavy ions

Advancement of Heavy Ion Radiolysis

Progression from radium salts to advanced accelerators

Radiolysis of Water and Aqueous Solutions

$H_2O \rightarrow e_{aq}^{-}$, H_3O^+ , OH, H, H_2 , H_2O_2

 e_{aq}^{-} : electron transfer reactions H₂: explosive, flammable H₂O₂: corrosive OH : biological

Direct Effects

DNA → single strand breaks, SSB double strand breaks, DSB multiply damaged sites, MDS

Indirect Effects

 $H_2O \rightarrow OH$ n(OH) + DNA \rightarrow SSB, DSB, MDS

OH Radical Scavenging

$$H_2O \land \land \land \rightarrow e_{aq}^{-}, H_3O^+, OH, H, H_2$$

Ion Characteristics

Notre Dame has a core set of ion accelerators. Each ion has a different track structure, physics and chemistry.

Heavy Ion Beamline

ROTOMETER

Gamma Radiolysis

Formation of OH Radicals with He Ions

J.A. LaVerne Radiat. Res. 1989

Track Segment and Track Average Yields

Track Average OH Radical Yields with He Ions

J.A. LaVerne Radiat. Res. 1989

OH Radical Scavenging Capacity

$$H_2O \land \land \land \rightarrow e_{aq}^{-}, H_3O^+, OH, H, H_2$$

			k (M ⁻¹ s ⁻¹)
●OH + ●OH	\rightarrow	H_2O_2	5.5 x 10 ⁹
e _{aq} + ∙OH	\rightarrow	OH-	3.0 x 10 ¹⁰
•	Track Reactions	• •	
•OH + HCOOH	\rightarrow	$H_2O + \bullet COOH$	1.3 x 10 ⁸
•H + HCOOH	\rightarrow	H ₂ + ●COOH	4.4 x 10 ⁵
•COOH + O_2	\rightarrow	$CO_2 + \bullet HO_2$	

Scavenging Capacity = [HCOOH] x $1.3 \times 10^8 (s^{-1})$

Track Segment LET Dependence of OH Radicals

T. Maeyama, S. Yamashita, G. Baldacchino, M. Taguchi, A. Kimura, T. Murakami, Y. Katsumura, Radiat. Phys. Chem. 2011

He: 2.3, 6.7 eV/nm C: 11, 22 eV/nm Ne: 48, 103 eV/nm Ar: 98, 148 eV/nm Fe: 205, 441 eV/nm

Heavy ion studies began in the Curie laboratory.

- Heavy ion studies are still important for many applications.
- OH radical yields are important for medical applications.
- OH radical yields are being determined for a wide variety of radiation type and LET.
- Determining temporal dependence of OH radical yields.

Model techniques are still being developed and compared with experiment.

Acknowledgments

Simon Pimblott – model calculations Melissa Ryan – DNA experiments Jaime Milligan – DNA experiments

Funded by: Office of Basic Energy Sciences U. S. Department of Energy

