EFFECT OF RADIOLYSIS ON LONG-TERM CORROSION PRODUCTS FORMED ON LOW-ALLOY STEELS

<u>Hugues Badet</u>^{1,2}, Delphine Neff¹, Gérard Baldacchino², Jean-Paul Gallien¹, Jean-Philippe Renault², Philippe Dillmann¹.

¹Laboratoire Archéomatériaux et Prévision de l'Altération (LAPA)

²Laboratoire de Radiolyse (LRad) CNRS UMR 3299 CEA Saclay/ DSM/IRAMIS/SIS2M Hugues.badet@cea.fr

OUTLINE

1

2

3

• INTRODUCTION:

- Context
- Approach and Methodology
- RESULTS
 - Irradiation Experiment
 - Simulation
- CONCLUSION
- PERSPECTIVES

CONTEXT

FRENCH NUCLEAR WASTE DISPOSAL

Similar Materials

 Multibarrier system: steel pack and overpack for geological storage

ANCIENT ANALOGUE APPROACH

DISPOSAL MEDIA

Clay: Anoxic conditions in presence of various ions

ANALOGUE

- Buried in a water
 saturated anoxic
 media during several
 - centuries

ANCIENT ANALOGUE APPROACH

LONG-TERM BEHAVIOUR PREDICTION

- Slow corrosion rate:
- \leq 1µm.year^{-1*}

PROTECTIVE AND STABLE CORROSION LAYER COMPOSED BY FERROUS CARBONATE SPECIES AND OTHER OXIDES*

CHARACTERISATION OF THE CORROSION LAYER

Optical Micrography of transverse section

*Saheb et al. (2010). <u>CEST**45(5): 381-387**</u>

SCENARIO OF RADIOLYSIS

RADIOLYSIS OF WATER PHENOMENA

Ionizing Radiation + Water Saturation

EFFECTS ON THE CORROSION SYSTEM?

Water radiolysis:

*ANDRA (2001). Référentiel Matériaux Tome 4 La corrosion des matériaux métalliques, ANDRA. IMPACT ON SYSTEMS WITH THICK CORROSION LAYERS?

METHODOLOGY

EXPERIMENTS	FACILITIES
 Short-term data: Irradiation of	 Gamma-ray irradiator
synthetized powders of	(kGy range)
 pure phases Steel coupon Irradiation of	 Pulsed electron
Archaeological ferrous	accelerator (LINAC
objects Modelling	type, up to 1 MGy)

FOCUS ON FERROUS CARBONATE PHASES WHICH ARE THE MAJOR SPECIES OF THE ANOXIC CORROSION PROFILE OF STEEL

ARCHAEOLOGICAL OBJECT IRRADIATION

PROTOCOL

- Gamma-ray irradiation for 6 days
- Cumulated dose: 34 kGy
- Anoxic stainless steel cell containing 60 ml of carbonated water ([HCO3⁻]=10⁻² M)
- □ Purge with N_2/CO_2 (95/5) during 2 h

OBJECT

- Medieval Nail (Charavines, FRANCE ca 1000AD)
- Buried in a water
 - satured anoxic media

ARCHAEOLOGICAL OBJECT IRRADIATION

ON PURPOSE IRRADIATION CELL

Stainless steel cell components for γ -Irradiation

IRRADIATION WITHOUT: -ORGANIC COMPONENT -OXYGEN

ARCHAEOLOGICAL OBJECT IRRADIATION

ANALYSIS AT ALL STAGES OF THE EXPERIMENT

- Optical Microscopy
 (OM) (in an anoxic cell after irradiation)
- µRAMAN Spectroscopy (in an anoxic cell after irradiation)
- EDX-SEM

BLANK SAMPLE (NON-IRRADIATED)

CHARACTERISATION ON TRANSVERSE SECTION BY OM

Optical Micrography of non irradiated- sample

Thickness of the corrosion layer:

 $20-200 \ \mu m$

BLANK SAMPLE (NON-IRRADIATED)

CHARACTERISATION ON TRANSVERSE SECTION BY EDX-SEM

____ x7∂ 200µm

Cartography by EDX-SEM of non-irradiated sample

- □ Grey Layer:
 - Atomic ratio Fe/O= 0.25 to 0.42
- \Box Islets of $Fe_x S_y$
- Calcium-iron
 substitution: Atomic
 ratio Ca/Fe= 0 to
 0.10

BLANK SAMPLE (NON-IRRADIATED)

CHARACTERISATION ON TRANSVERSE SECTION BY µRAMAN-S

Spectrum:
 Grey Layer:

IRON SULFIDE n.i. Fe_xS_y

BLANK SAMPLE (NON IRRADIATED)

CHARACTERISATION ON TRANSVERSE SECTION

- Layer of Siderite and Ferrihydrite
- Discontinuous Fe_xS_y islets
- Micro pores
- Thickness of the corrosion layer:
 - 20-200µm

CORROSION LAYER PROFILE

CHARACTERISATION BY OM

 Before polishing:
 Uniform dark layer grew up on the cut metallic surface

Optical Micrography of irradiated sample without polishing

CHARACTERISATION BY µRAMAN-S

 Unpolished stage:
 Siderite grew up on the metallic surface

Optical Micrography of irradiated sample without polishing

CHARACTERISATION BY OM

- □ After polishing:
 - few orange species appear inside the corrosion layer
 - Same Thickness: 20-200µm

CHARACTERISATION ON TRANSVERSE SECTION BY µRAMAN-S

- Layer composition
 similar to blank sample
- Goethite spectra is detected once inside the corrosion layer

Raman shift / cm-1

CONCLUSION

RESULTS

- Similar matrix composition
- Thickness of the corrosion layer:
 20 200 µm
- Siderite layer grew up on the metallic surface
- Goethite detected

CORROSION PROFILE CHANGE

MODELING KINETICS DURING

SOFTWARE

- Simulation of Kinetics of chemical systems with and without irradiation
- Solve differential equation system

SYSTEM OF INTEREST

- Water with carbonate ([HCO₃⁻]=10⁻² M)
- □ pH=7

- □ Time=136 h
- Total Dose=34 kGy
- □ Gamma-ray
- More than 100 reactions^{*}
 - *NIST Database

MODELING KINETICS

GUIDELINE REACTIONS

Water cleavage and recombining reaction:

Dioxygen production:

 $2H_2O_2 \xrightarrow{-----} O_2 + 2H_2O_2$ $2O_2^{\circ} \xrightarrow{-----} O_2 + O_2^{2}$

2

Hydrogen carbonate cleavage reaction:

$$HCO_3^{-+}e_{aq}^{----}HCO_2^{-+}O^{-\circ}$$

 Iron species will be included later (+80 reactions)

3

MODELING KINETICS: H_2 , O_2 and H_2O_2

SIMULATION CONCLUSION

- Both oxidizing and reductive species appear during the irradiation
 - 10^3 times more molecular species accumulate with 10^{-2} M [HCO₃⁻] than with pure water
- $\Box [H_2] = about 2[O_2] \implies Balance verified.$
- pH increases up to 8 with carbonate media
- □ Iron species will react with these species
- Potentiel of solution have to be modelled and measured

CONCLUSION

- Experimental setup is validated by this first set of results
- Solution composition will be measured in further experiments
- Simulation reveals a complex modification of the solution to be continued
- Effect of radiolysis of water on ancient ferrous system could have a potentiel impact on the corrosion layer.

WHAT WE PLAN NEXT

SHORT-TERM LAB EXPERIMENT

- Estimation of first stage corrosion rate with Electric Impedance Spectroscopy and micro-Gas Chromatography
- Irradiation of wet synthetized powder and steel coupon

LONG-TERM STUDIES

- Study of unirradiated system in water
- Pulsed electron experiment (High-dose)
- Reproductibility of first results
- Electrochemical solution measurment (pH, Eh)

MODELLING

- Addition of Iron species system in CHEMSIMUL
- Thermodynamic studies with CHESS software

Acknowledgements

- LAPA and LRad members
- □ C. Bataillon (LECA)
- □ P. Bouniol and L. Chomat (LECBA)
- B. Coltrinari (SIS2M)
- C. Rémazeilles (LEMMA)
- □ F. Saillant (LEEL)
- Symposium Organisators team