

Comparison between VUV light and gamma-rays irradiation for molecular hydrogen (H₂) and OH radical production

Dr. Charles KLETT

Laboratoire de Radiolyse CEA/IRAMIS et UMR 3299 CNRS

I. Context

II. Experimental setup

III. Results

IV. Conclusion

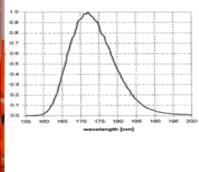
Context

Irradiation of water $H_2O + (hv \text{ or } \gamma) \rightarrow HO^{\bullet}, e_{aq}^{-}, H^{\bullet}$ $e_{aq}^{-} + e_{aq}^{-} \Rightarrow H_2 + 2 OH^{-}$ $e_{aq}^{-} + H_3O^{+} \Rightarrow H^{\bullet} + H_2O$ $\Rightarrow HO^{\bullet} + H_2 \Rightarrow H^{\bullet} + H_2O$ $H^{\bullet} + H^{\bullet} \Rightarrow H_2$ $HO^{\bullet} + HO^{\bullet} \Rightarrow H_2O_2$

The radiolysis of pure water produces very low amount of molecular hydrogen and hydrogen peroxide.

Usually, scavengers such as halide (Br⁻, Cl⁻, etc) are used to promote the molecular hydrogen production by quenching process of OH radical.

Question: is it still true for UV light illumination ?


Experimental setup

Irradiation part

UV light

UV light illumination

γ-rays

- UV light was generated by DBD discharge with Xenon as a gas.

- Maximum emission wavelengh was determined to be equal to 172 nm (7,2 eV)

 ¹³⁷Cs as gamma-rays source, with a dose rate of 5,5 Gy/mn by Fricke dosimeter method.

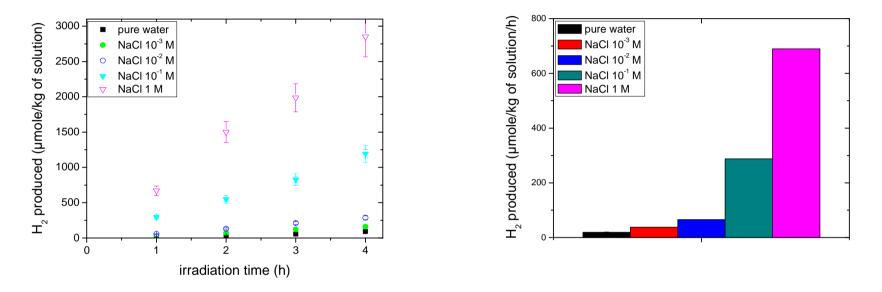
Experimental setup Analysis part

Gas chromatography

For H₂ measurements

Samples

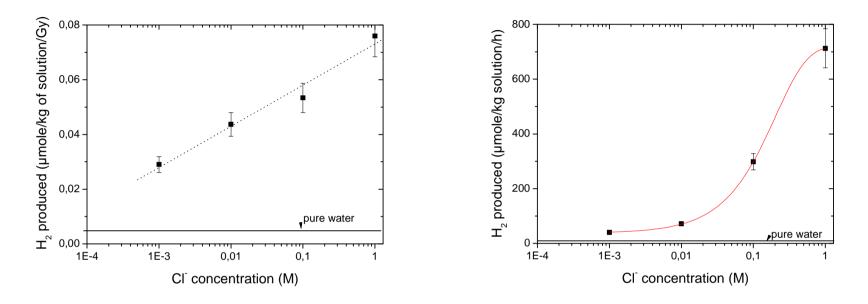
- All the chemicals were purchased from Sigma Aldrich and were higher purity available,
- NaCl concentration was varied from 10⁻³ to 1 M.
- Solutions were irradiated in deaerated conditions (with argon as the inert gas) in quartz and pyrex test tubes respectively for VUV and γrays irradiation.


Specific terms

Production yield of (X) = number of mole of X per kilogram of solution and Gray (µmole/kg of solution/Gy or h)

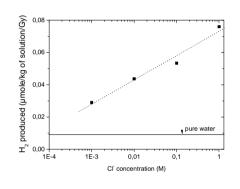
(X) stands for H_2

Results UV light illumination

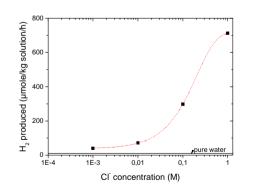

OH radical scavenged by Cl⁻: production of H₂

- H_2 production \nearrow linearly as the time course \nearrow
- Production of $H_2 \nearrow$ with increasing Cl⁻ concentration

The production of H_2 is limited in VUV without HO scavenger, the question is: it's the same mechanism for that obtained in γ -rays ? Radiation Chemistry Symposium, 15-16 november 2011, Maison de la Chimie, Paris

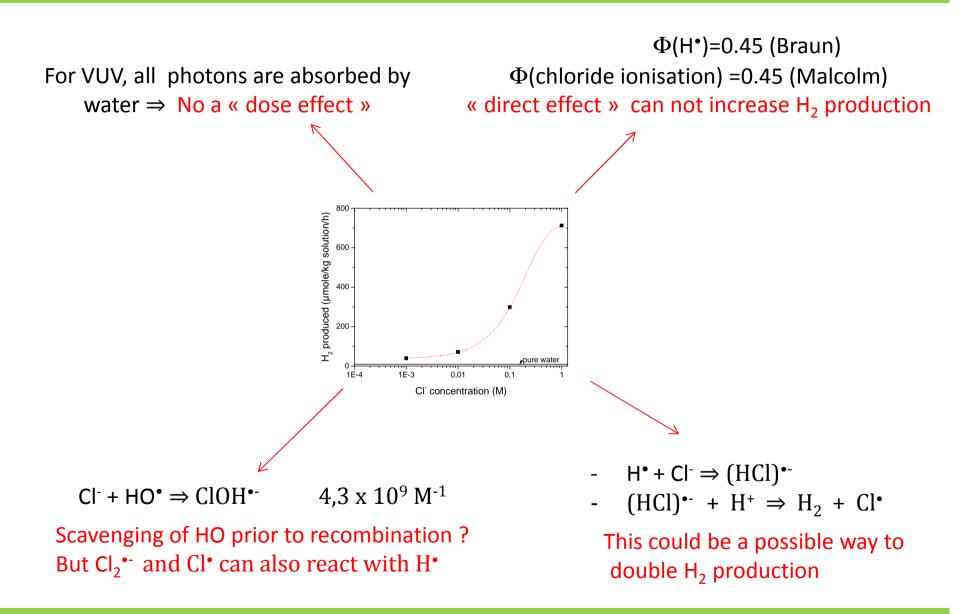

Comparison between y-rays and UV light

In γ-rays production of H₂ *¬* smoothly with Cl⁻ concentration
 On the contrary, the production of H₂ in VUV
 exhibit an important *¬* at high [Cl⁻]


Comparison between γ -rays and VUV light

Gamma Irradiation

- $Cl^- + HO^\bullet \Rightarrow ClOH^{\bullet-}$ 4,3 x 10⁹ M⁻¹.s⁻¹
 - $Cl^{-} \Rightarrow Cl^{-} + e^{-}$? No direct effect observed in Littérature (Anna Balcerzyk et al, 2011; Ferradini)


VUV

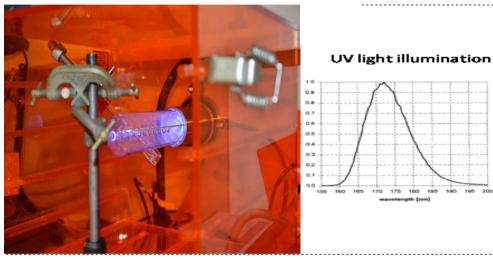
- $H_2O + hv \Rightarrow HO^{\bullet} + H^{\bullet}$ VUV
- $Cl^- + hv \Rightarrow Cl^- + e^-$ UV-VUV
- $\mathsf{Cl}^- + \mathsf{H}^\bullet \Rightarrow [\mathsf{HCl}^{\bullet-}]$

Extensive H° production and Cl⁻ ionization can be expected in VUV

Hypothesis

Conclusion

- For VUV, all photons are absorbed by water and by solute at high concentration
- \rightarrow direct ionization
- Yield of H₂ increases with Cl⁻ concentration,
- Impact of a very early HO[•] scavenging, also present in γ-rays irradiation
- A specificity of VUV, a very high yield of H[•] in VUV Ø(HO[•])≈Ø(H[•]) (Get off, Braun) can be produced which leads to an increase of H₂ production,


This increase in the production yield of H_2 in VUV is probably due to the direct ionization of the solute by the ionizing radiation. This assumption seems to be right for inorganic compound.

The question is, it is also true for organic compound ?

In other words, one would like to know if the quenching process of $Cl^{+} e_{aq}^{-}$ is more or less efficient than recombination of HO⁺ H[•](excess energy in the electron or reaction with Cl^{-}).

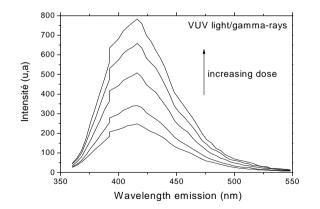
Experimental setup

Irradiation part

UV light

- UV light was generated by DBD discharge with Xenon as a gas.

- Maximum emission wavelengh was determined to be equal to 172 nm (7,2 eV)


γ-rays

- ¹³⁷Cs as gamma-rays source, with a dose rate of 5,5 Gy/mn by Fricke dosimeter method.
- Dose was varied from 55 Gy up to 220 Gy

Experimental setup Analysis part

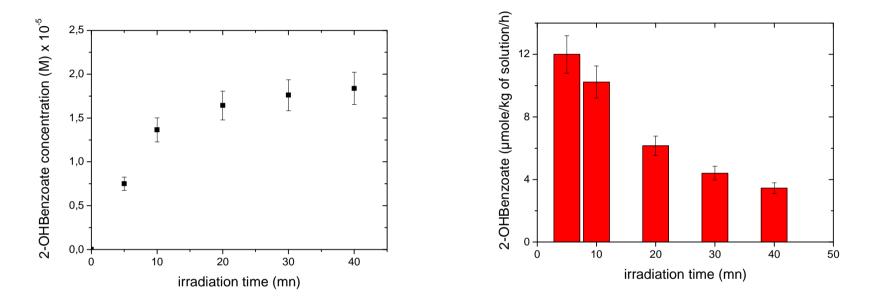
Spectrofluorimeter For fluorescence of 2-OHbenzoate

Samples

- Solutions were irradiated in aerated conditions in quartz tubes,
- Benzoate concentration was varied from 10⁻³
 up to 0,1 M,
- Excitation and emission wavelengths were 290 and 416 nm respectively

 HO^{\bullet} + benzoate \Rightarrow 2-OHbenzoate

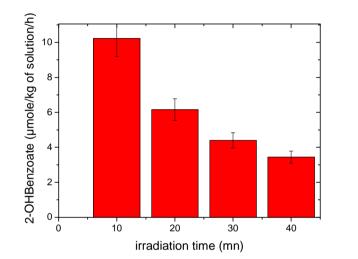
Less fluorescent


fluorescent

Production yield of (X) = number of mole of X per kilogram of solution and Gray (μmole/kg of solution/Gy or h)

Time capture of $(HO^{\bullet}) = 1/rate$ constant of reaction(HO + benzoate) x [benzoate] (s⁻¹)

UV light illumination


OH radical scavenged by benzoate: production of 2-OHbenzoate

- 2-OHbenzoate production 7 from 0 to 10 mn and above this time saturation occurs,
- Time dependencies on the production yield of 2-OHbenzoate
- Production yield of 2-OHbenzoate ↘ with increasing time illumination ⇒ degradation by direct ionization of Bz and (2-HOBz) ?

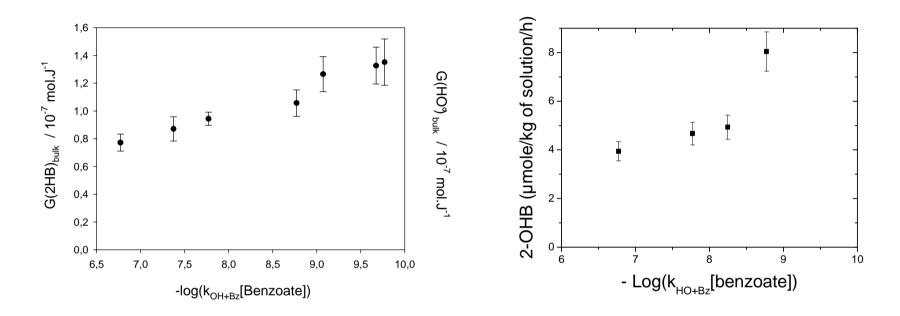
UV light illumination

Possible hydroxylation mechanisms

Benzoate ionisation does not lead to hydroxylation

$-H_2O + hv \Rightarrow HO^{\bullet} + H^{\bullet}$

 $HO^{\bullet} + C_6H_5COO^{-} \Rightarrow 2 - HOC_6H_5COO^{-}$


Possible degradation mechanism ?

- $C_6H_5COO^- + hv \Rightarrow C_6H_5COO^- + e^-$
- $C_6H_5COO \rightarrow C_6H_5 + CO_2$
- ${}^{\bullet}C_{6}H_{5} + HO^{\bullet} \Rightarrow C_{6}H_{5}HO$

Could we imagine the same mechanism in the case of γ-rays irradiation ?

Preliminary results

Comparison between γ-rays and UV light

- Both systems exhibit the same behavior, or trends
- The production yield of 2-OHbenzoate **↗** from 10⁻³ to 10⁻² M, in VUV,
- Above 10^{-2} M, the yield of 2-OHbenzoate increases by a factor 2 up to short scavenging times, ns for γ , 10 ns for VUV

Hydroxylation of benzoate in gamma-rays, data obtained in a preliminary study done by Raluca. Musat, 2009

Conclusion

- In VUV, at low Cl⁻ concentration, there is no direct effect of the ionizing radiation on the solute,
- On the contrary, at high Cl⁻ concentration, direct ionization of solute occurs,
- The possible high H_2 production seems to be due to extensive production of H[•] and required suppression of the back reaction of HO[•] + H[•] \rightarrow H₂O
- Impact of a very early HO[•] scavenging, also present in γ-rays irradiation,

Futur works

- / Understand the mechanism involved during the high production of molecular hydrogen in VUV at high solute concentration. $H^{\bullet} + Cl^{-} \rightarrow [HCl]^{\bullet-} + H^{+} \rightarrow H_{2} + Cl$
 - In other words study the impact of this reaction on the H₂ production
- / Identify and quantify the by-products formed during the irradiation of benzoate by VUV light
- / Compare the efficiency of Cl⁻ and benzoate for HO[•] radical scavenging,
- / Explore the degradation of benzoate in both systems by ionizing radiation.

Acknowledgments

FinancialDSM: Recherche Fondamentale poursupportl'énergie

All members of the Laboratoire de Radiolyse in particular

Stéphane Esnouff for GC Analysis And Gerard Baldacchino

Thank you for your attention