

Overview of the radiolysis topic in the nuclear fuel cycle

C. Lamouroux* And DEN departments involved in radiolysis *CEA Saclay/DEN/DANS/DPC CEA Saclay/DEN-DANS/DRSN CEA Marcoule/DEN/DRCP CEA Marcoule/DEN/DTCD CEA Cadarache/DEN/DSN

Outline

- Radiolysis
 - > Basic
 - > Why ?
 - > Where ?
 - > How ?
 - Nature of radiation
 - Targets diversity
- Water radiolysis
 - > State of knowledge
 - > PWR
 - > Fuel storage
 - > Highly concentrated media
- Gaz radiolysis
- Organic molecules
- Exemple of an operationnal approach : case of the radiolysis of waste packages.

Radiolysis - Basic

G-values

G = # Molecules Produced per 100 eV absorbed energy

Dependent on Incidental Radiation (α , β , γ , n)

N(X)x100G(X)Dose(eV

Forward (Radiolytic) vs. Back Reactions

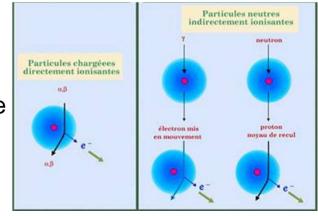
- > Gi Primary steps (at very short time ps)
- > G_{app} Stable compounds in solution after recombination

Emitters

 α , β , γ , X, n,...

Radical formation

H●, OH●,,,– –


```
H<sub>2</sub>O – –
```

Breaking of molecular bonds

Chemical recombination

• LET Linear energy transfer is a measure of the energy transferred to material as an ionizing particle travels through it

- > for α and β : direct energy deposition
- > for γ and n : indirect energy deposition

 \rightarrow H_2 H_2O_2 e^-_{ag} , H OH HO_2 , H_3O^+

Radiolysis study : Why?

 All conditions are met to promote radiolysis in the nuclear fuel cycle – difficult to prevent, we have to

Anticipate - Evaluate - Manage ⇒ The impact of the phenomenon

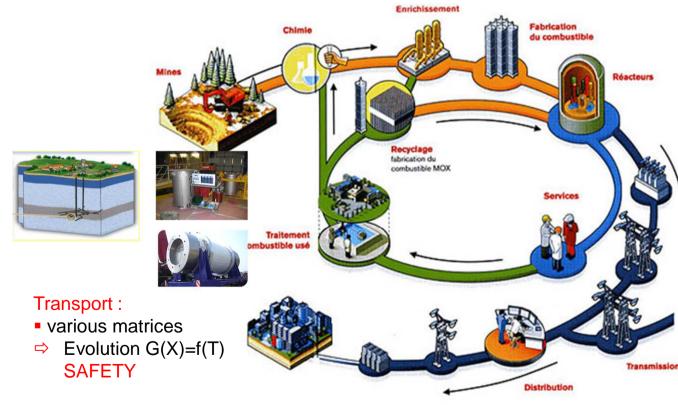
Modifications	Type of species	Consequences
Gaz production	H_2 CH ₄ , CO, CO ₂ H2S,	Safety Depressure - Overpressure Inflammability Toxicity
Corrosive species production	OH• H ₂ 0 ₂ F ⁻ ; C ^{I-} ; CIO ⁻	Aging – Life time Corrosion Solution chemistry equilibrium ⇔ speciation
Molecules degradation	Extractants TBP, diamides, …⇔ breakdown sequences	Process reliability and robustness Loss of extraction capacities
Materials degradation	Polymers ⇒ scission; crosslinking; oxydation lon exchange resins degradation	Aging – Life time Loss of mechanical properties Loss of exchange capacity
Complexant molecule production	Formation of small oxydised molecules : carboxylic acids, ketons, aldehydes, alcohols	Environmental impact Complexing properties Migration of radionuclides

Radiolysis in the nuclear fuel cycle : where ?

Long term waste behaviour

- wastes (polymers, precipitates, cellulose,...)
- matrices (bitumen, cement, sand, glass)
- \Rightarrow gaz release G(X)
- ⇒ complexant molecules

SAFETY / ENVIRONMENTAL IMPACT


Recycling

Stability of the reprocessing solvent

⇒ G(-L)

- degradation products
- Highly concentrated PF solutions
- ⇒ New species formation
- SAFETY /PROCESS RELIABILITY

Fuel fabrication ■Radiolysis of sorbed water ⇒ G(H2) SAFETY

Reactor operations

- water radiolysis
- ⇒ Gaz production
- Corrosive species production
- materials aging (polymers)
- ➡ Loss of mechanical properties (cables, ...)

SAFETY / AGING – LIFE TIME

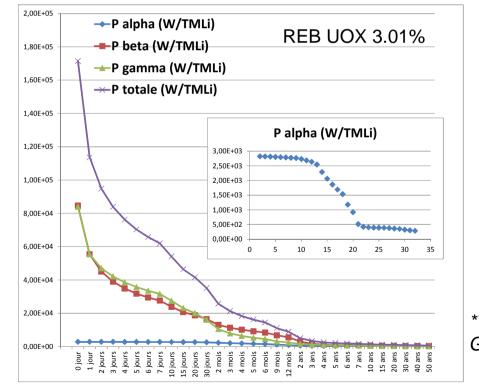
Fuel storage

- water radiolysis
- 🗢 Gaz

SAFETY

How ? Radiation sources

Requirement

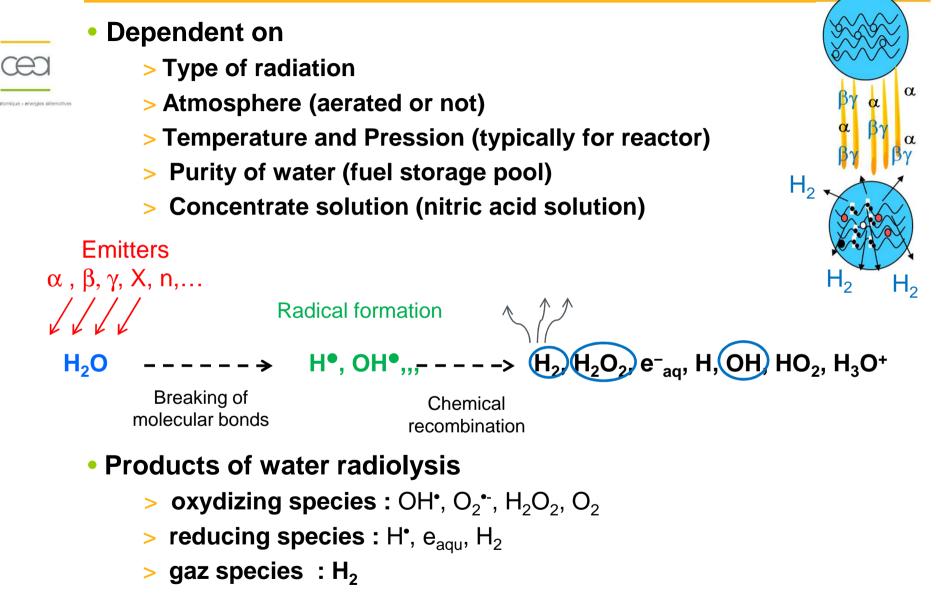


- > Nature of emitters* (α , β , γ)
 - Fuel Type (Uox, Mox, UNGG,...)
 - % Enrichment

> Power

- Burn-up
- Cooling time

*There are few pure Alpha or Beta emitters, Gamma emission is concomitant


Outline

<u>re</u>r

Radiolysis

- > Basic
- > Why ?
- > Where ?
- > How ?
 - Nature of radiation
 - Targets diversity
- Water radiolysis
 - > State of knowledge
 - > PWR
 - > Fuel storage
 - > Highly concentrated media
- Gaz radiolysis
- Organic molecules
- Exemple of an operationnal approach : case of the radiolysis of waste packages.

Water radiolysis

Radiolysis of pure water: state of knowledge

Nature of the incidental radiation

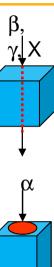
- CEN
- The very pure water irradiated by highly penetrating radiation (γ, X) seems inert to radiation
 Recombination in a closed environment
- For penetrating particles (α), the production of free radicals is too low compared to the production of molecular products and their recombination is incomplete: there is still a decomposition of water.

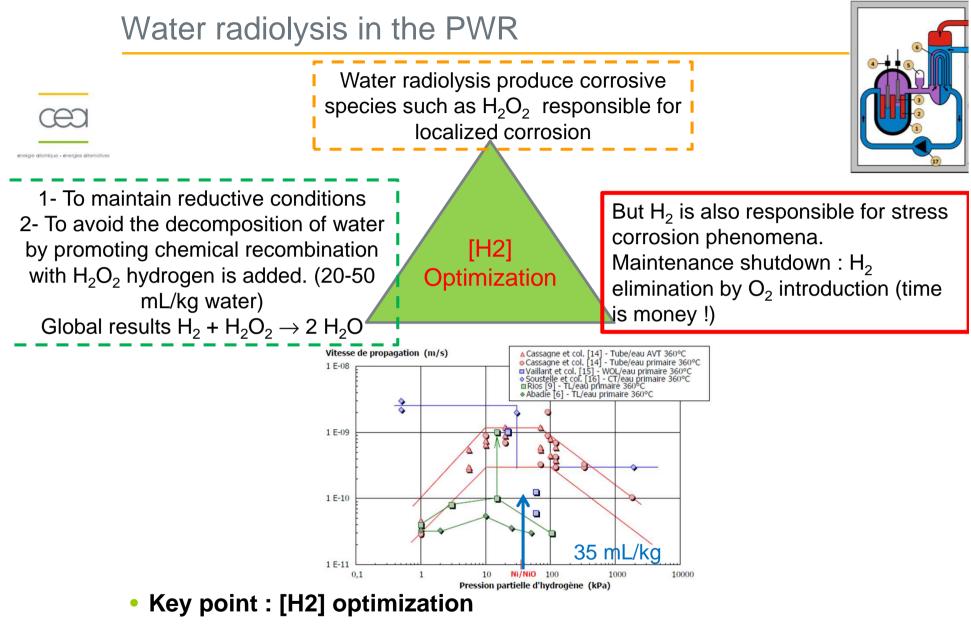
Physico-chemical conditions

Closed system with H₂

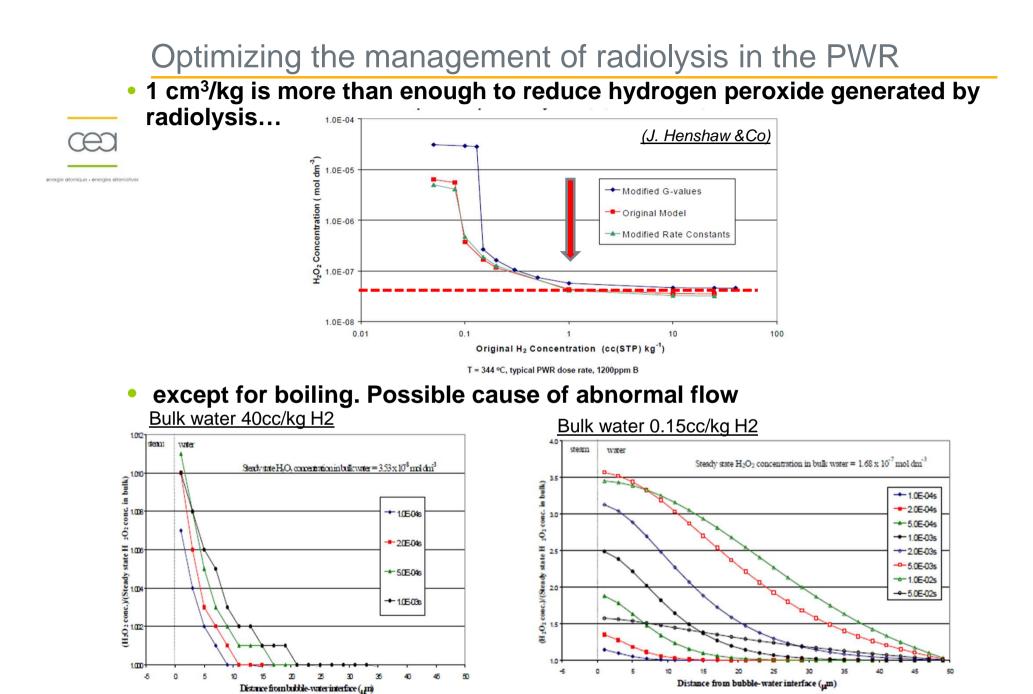
Results : $H_2 + H_2O_2 \rightarrow 2 H_2O$

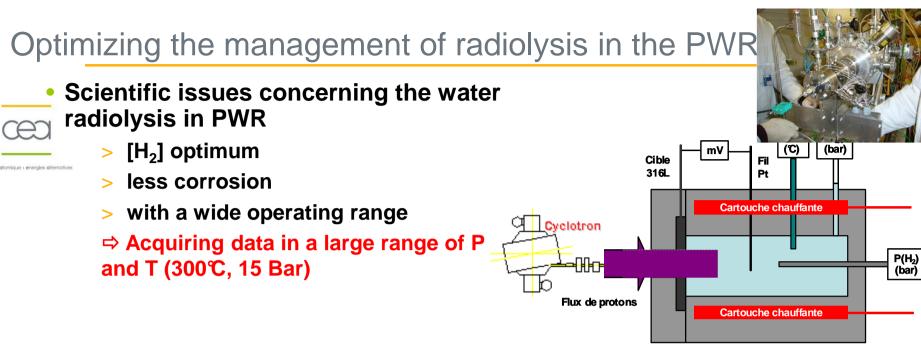
Effective chain reaction \Rightarrow Stabilization due to the effective recombination



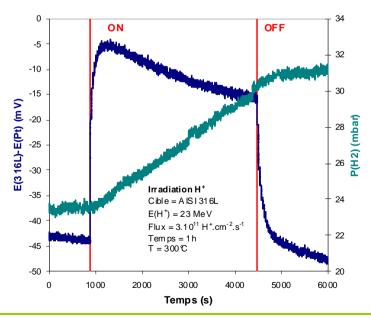

 $H + H \rightarrow H$ OH + OH

 \Rightarrow All the species reacting with H and OH radicals make the process less efficient.


Open system : [O₂] sufficient


 \Rightarrow O₂ compete with H₂ to react on OH \Rightarrow H₂ production

> Increasing and reducing have both advantages and drawbacks



Development of an innovative experiment

Proton irradiation (CEMTHI Orléans) 34 MeV (patented

- > with proton irradiation
 > operating conditions (up to 330°C and
- 16 bar)
- > monitoring of the redox potential of the aqueous solution
- > on line [H₂] measurement
- > post-mortem characterization of surface sample (MEB, DRX,....)

DEN-DPC / CEMTHI

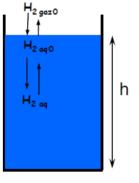
Water radiolysis in spent fuel pool

[31/03/2011] IRSN website "The release of hydrogen in Fukushima is not only due to the oxidation of zirconium cladding but also due to water radiolysis?"

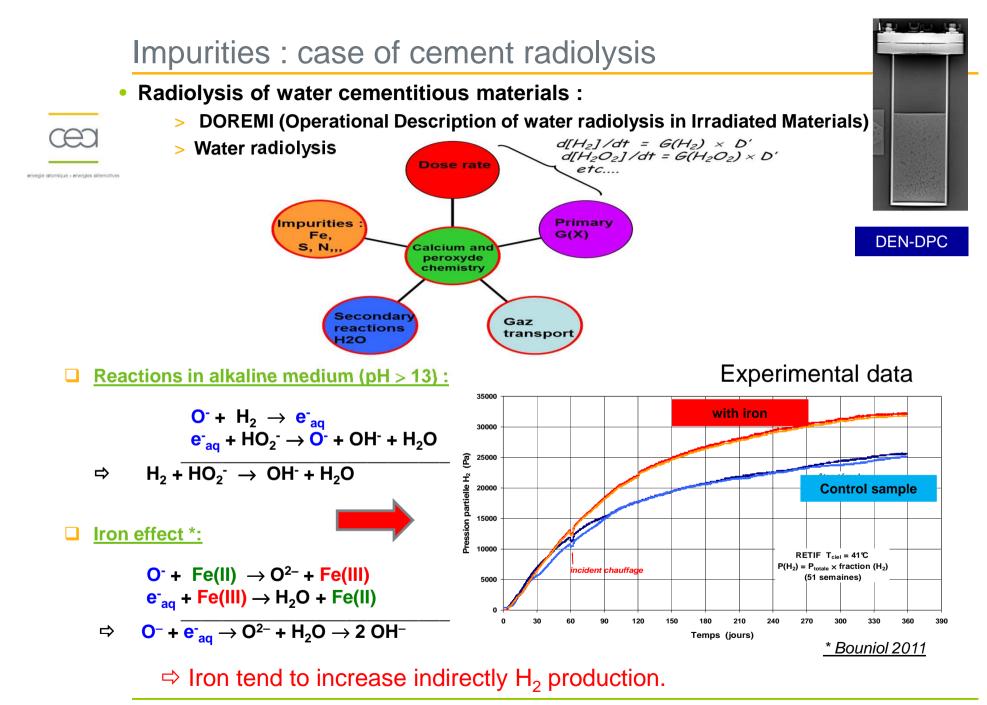
For safety demonstration : H₂ production by radiolysis

⇒ RISK : calculation in first approach is too conservative

- > pure water
- > open system (aerated)
- > no recombination
- > all the energy released in water


Scientific issues :

- determination of dose rate and the energy deposition by taking into account the geometry of the assemblies (TRIPOLI)
- > open or partially closed system : difference between the top, in contact with the air and the bottom of the pool
- In case of incident or accident : evolution of G(H₂) with impurities (salt, dissolved metal or organic species, gazeous atmosphere)?


 $V(H_2)$ calculation : $V(H_2) = *G(H_2) \times a P$

*G(H2)=0,45 mol/100ev

DEN-DPC

DPC

14

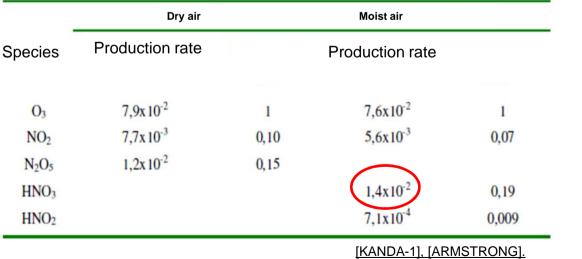
Outline

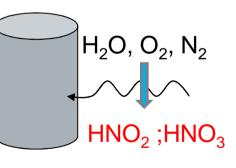
<u>re</u>r

Radiolysis

- > Basic
- > Why ?
- > Where ?
- > How ?
 - Nature of radiation
 - Targets diversity
- Water radiolysis
 - > State of knowledge
 - > PWR
 - > Fuel storage
 - > Highly concentrated media
- Gaz radiolysis
- Organic molecules
- Exemple of an operationnal approach : case of the radiolysis of waste packages.

Gaz radiolysis

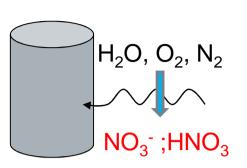

Air radiolysis

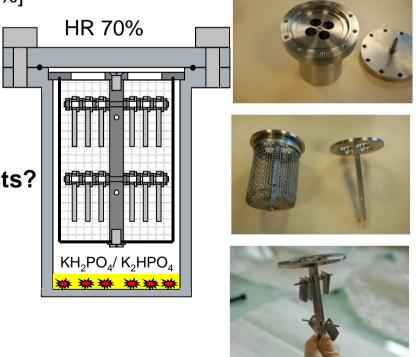

- > leads to an oxidizing environment \Rightarrow O₃, NO₂
- > dry air \Rightarrow N₂O₅
- > moist air \Rightarrow HNO₂; HNO₃

• Impact

- > damage corrosion \Rightarrow (CSDC)
 - ZYR-4 tube
 - alloy 718 (grid)
- > impact on container corrosion ⇒ stainless steel

\Rightarrow Evaluation of the consequences on the long life storage




Andra website

Gaz radiolysis

Integrated irradiation experiment CASIMIR (Corrosion AtmoSphérIque des Matériaux sous Irradiation)

- > Irradiation of mini-container
- > Conditions
- Température : 80°C
- Different dose rate [300-10 Gy/h]
- Different duration : from 6 to 12 months
- Different relative humidity HR [70%-100%]
- Different steels composition
- Output
 - > Production of HNO₃ or not ?
 - > Determination [HNO₃]
 - > Observation of corrosion products?
 - > Identification
 - > And kinetic

DEN-DPC / DRSN-LABRA

Outline

<u>re</u>r

Radiolysis

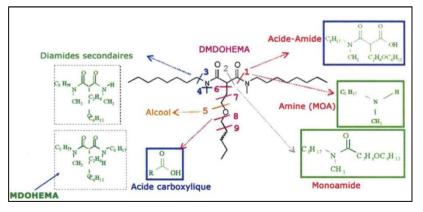
- > Basic
- > Why ?
- > Where ?
- > How ?
 - Nature of radiation
 - Targets diversity
- Water radiolysis
 - > State of knowledge
 - > PWR
 - > Fuel storage
 - > Highly concentrated media
- Gaz radiolysis
- Organic molecules
- Exemple of an operationnal approach : case of the radiolysis of waste packages.

Organic molecules radiolysis

spent fuel reprocessing

- > TBP (Tributyl Phosphate) Solvant used in the french reprocessing process (PUREX process): allowed the extraction of U(VI) and Pu(IV)
 - > Partitioning concept : New solvents based on diamides,...
- ⇒ Consequences on Process reliability and robustness
- Decrease in the extractant concentration
 - Control of the process : follow up and adjustment of the concentration

Formation of degradation products derivatives (ex for TBP : MBP, HDBP) :


- > Impact on performance extraction
- > Risk of Pu retention and accumulation
- > Risk of precipitation with the new species formed,

Need to developp effective treatment for solvent recycling

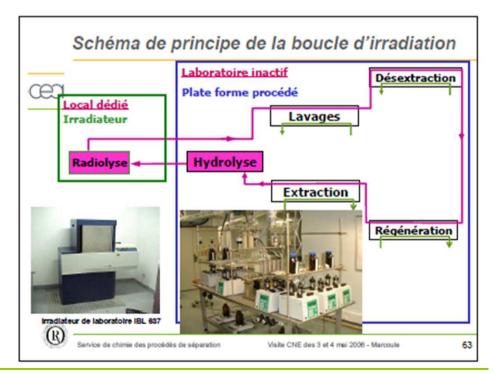
 \Rightarrow Typical studies :

DPC

- > Identification and quantification of species
- > Degradation mechanisms

* Diamide degradation Berthon 2009

Organic molecules based compounds : solvent

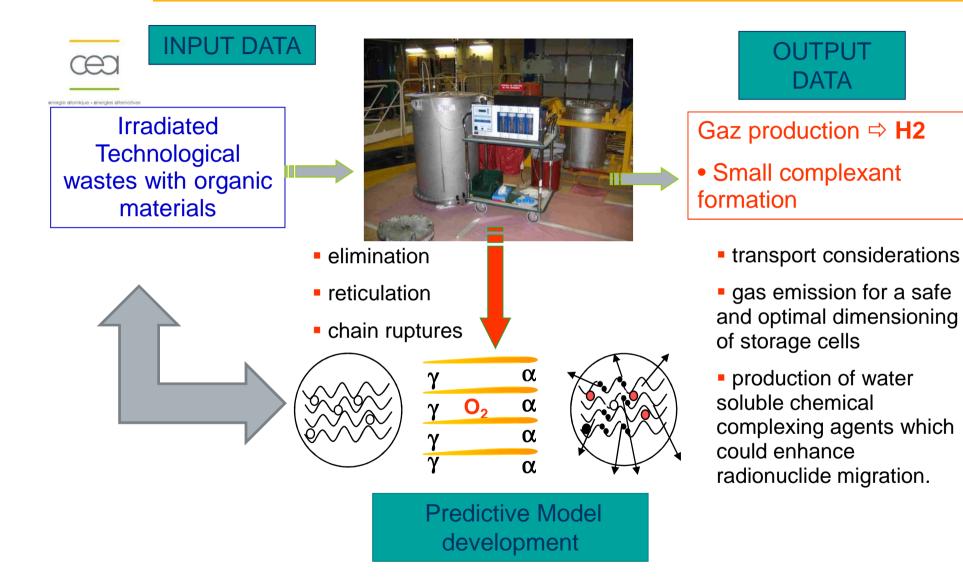

Scientific issues concerning the radiolysis of extractants

- Increase the understanding of degradation mechanisms of extracting molecules and complexes in order to:
 - define appropriate treatment
 - propose new more stable molecules
- Study of the behavior of redox systems in radiolysis: the radiolysis of nitric solutions significantly affect the oxidation of actinides in the dissolving solution and the extraction cycles
- > Radiolysis of water dissolved in organic phase

Thanks to Marcel facilities in CEA Marcoule :

- > Liquid-liquid extraction system
- > Coupled with an irradiator ¹³⁷Cs

Outline

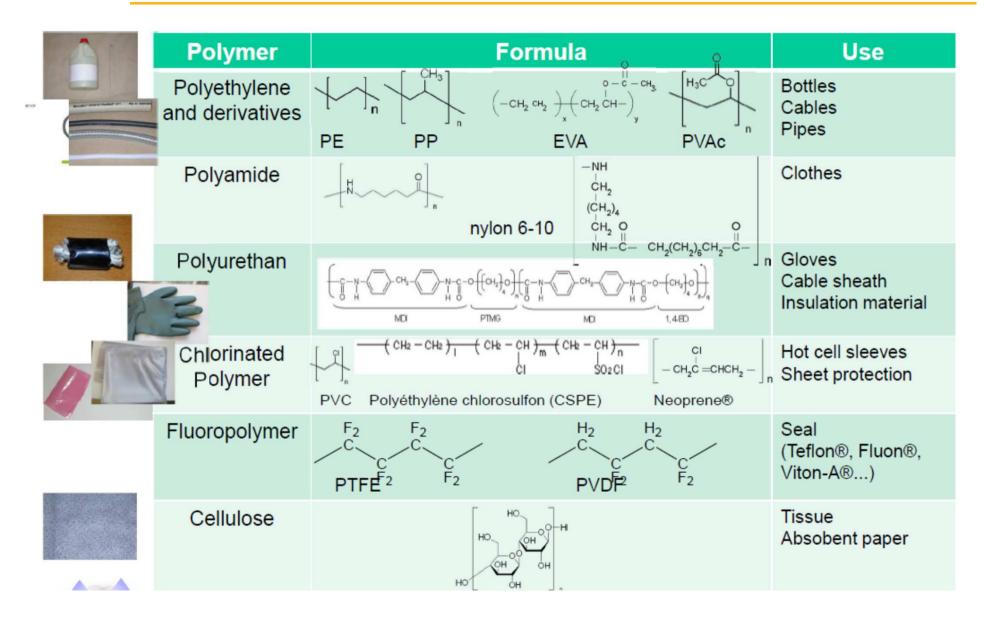

rec

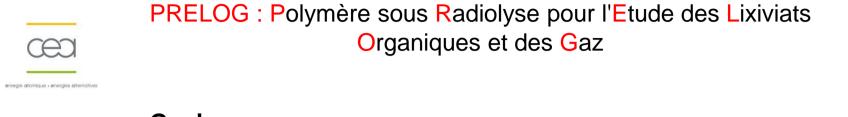
Radiolysis

- > Basic
- > Why ?
- > Where ?
- > How ?
 - Nature of radiation
 - Targets diversity
- Water radiolysis
 - > State of knowledge
 - > PWR
 - > Fuel storage
 - > Highly concentrated media
- Gaz radiolysis
- Organic molecules

• Exemple of an operationnal approach : case of the radiolysis of waste packages.

Operationnal approach : radiolysis of organic wastes packages




DEN-DPC / DEN-DSN / DEN/DTCD / DEN-DRCP / IRAMIS-LRAD

CECI	Inventory $(1 - \overline{a}^{j})P_{em}^{j}\sum_{k}f_{k}^{j}G_{k}^{j}V_{m}(\overline{a})$ = a E _{émise} × G(X)	Γ)
Need	Operating data	
Emission source : Activity of the different emitters (α , β , γ)	Typical radiological spectrum from PWR, BWR, UNGG reactor	Knowledge of the waste packages
Nature of the target: thickness, weight, density, volume.	Nature of waste: paper, bottle, pipes, Crushed,,,,	
Chemical nature and gaz emission: G(H2)	Nature of polymers. PE, PP, PUR,,,,	Development of a data base
Energy deposition: a $lpha;eta;\gamma$	Chemical and physical forms (particle size) Contact : on, inside,	Energy deposition and dose effect

4 Validation : measurements

1- Knowledge of the waste packages

- Goals
 - > Have a common database used by the partners involved in the management and transport of nuclear waste containing organic compounds.
 - > Prediction tool (time evolution, oxydation)

• Part I : Bibliography (more than 300 publications)

• Part II : Completed by experimental work

- > Gaz production G(X)
- > Small organic compound determination

• Part III : Prediction tool

> Evolution of G(X) with accumulated doses.

2- Experimental data

- Irradiation experiments
- CCC <u>G₀(X) : new material</u>
 - Gamma radiolysis
 - source 60 Co ou 137 Cs DD 1-2 kGy/h, Dose 150-300 kGy.
 - alpha radiolysis: simulation with heavy ions in Ganil facilities

G₀ insufficient to model the long-term behavior

Evolution G = f(agig)

- Pre-aging material
- ✓Dose 6-8 MGy
- Environnement : inert or aerated
- Formulation : charge effect,
- Temperature

caracterisations

- evolution of materials : IRTF,
- gaz quantification : HRMS
- small organic compounds identifications IC, HPLC-MS,,,

PVC Plastunion

2- PRELOG

More than 2000 data

- > Industrial polymer
- > Pure polymer
- > Temperature effect
- > Dose effect
- > Atmosphere (inert ; air)
- > ...
- Output data base
 - > formulation
 - > G(H₂) and other gases (CH₄, CO₂,...)
 - > references

Step 1: choice of a reference material in the database

Step 2: calculation of G_{max} and G_{min}

46% NORDEL 2722 2% carbon blacks 37% kaolin 5% vulcanizing agents 5% oils implementation 3% stabilizers

$$G_{\max}(H_2) \approx 1.2 \, 10^{-7} \, mol \, / J$$

 $G_{\min}(H_2) \approx 0.6 \, 10^{-7} \, mol \, / J$

Cable insulation

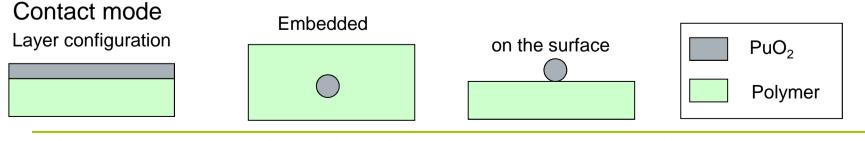
3- Energy deposition

Energy deposition a

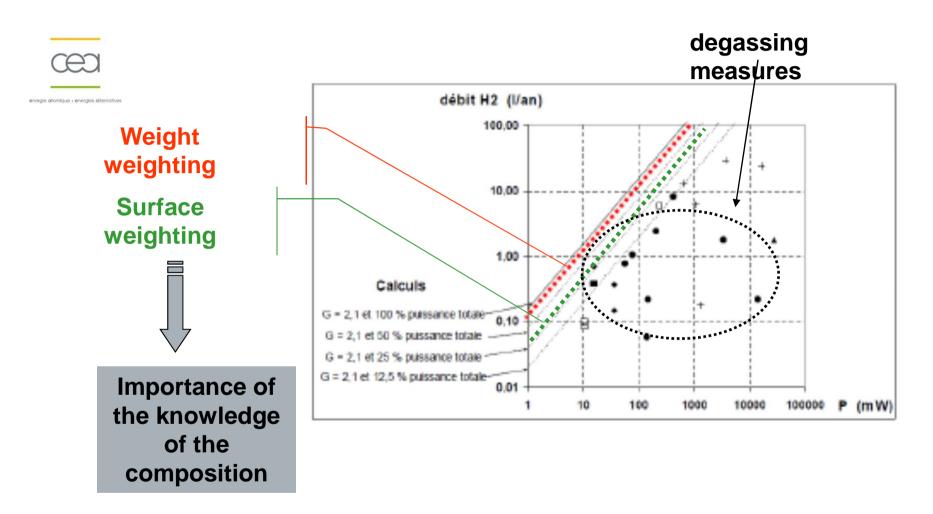
□ type of emitters

Contact mode

$$V_{gaz}(X) = a E_{\acute{e}mise} \times G(X)$$


gamma , X et (β)

- \checkmark no auto-absorption penetrant radiation a = 1
- \checkmark energy deposition : from 0 to 100%
- \checkmark consideration of the volume of the target


• α

atomiaβenerγeteriXes

- ✓Auto-absorption ⇒ code 3DIP
- $\checkmark {\sf Dependant}$ on contact mode
- ✓Complete energy deposition
- \checkmark Consider the surface of the target

Colloque Chimie Sous Rayonnement

⇒The model is still conservative but takes into account realistic assumptions.

CONCLUSION

- Wide range of relevant field
 - > Water radiolysis
 - > Polymer radiolysis
 - > Materials and corrosion
 - > Dosimetry
 - > ...
- But also
 - > confined spacies
 - > hydrated species
 - > porous materials
 - > ...
- Need a strong link between basic and applied research
- Requires heavy and expensive installations

Thanks

DEN/DISN

- > Program Reactor Gen II-III
- > Program current back end fuel cycle (ACA)
- > Program future back end fuel cycle (ACF)
- > Basic research (RSTB)

• DEN-DADN

> R&D waste package radiolysis

DEN-Department involves in radiolysis topics

- > DPC basic research and development of operational model (reactor, corrosion, long term behaviour of cement and polymer materials in waste packages, spent fuel pool)
- > DRCP (back end fuel cycle : solvent, nitric acid solution, PuO₂)
- > DTCD (Long term behaviour of bitumen, Ion Exchange Resins, nuclear glasses) with future gammatech facilities
- DSN (measure on waste packages, instrumented waste packages, integrated experiments) and chicade facilities
- > DTCD (DRSN Labra facilities)
- IRAMIS LRAD
- The radiolysis network
- Our industrial partners

