Les sujets de thèses

Dernière mise à jour : 22-01-2018

4 sujets IRAMIS/NIMBE

«««

• Chimie

 

Films polymères bactériostatiques

SL-DRF-18-0680

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Geraldine CARROT

Marie-Noelle BELLON-FONTAINE

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geraldine CARROT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Directeur de thèse :

Marie-Noelle BELLON-FONTAINE

AgroParisTech - MICALIS/ INRA/ AgroParisTech

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=carrot

Labo : http://iramis.cea.fr/nimbe/licsen/

La prolifération microbienne représente une importante préoccupation dans de nombreuses applications commerciales, en particulier l'emballage alimentaire où la détérioration du produit est étroitement liée à des enjeux à la fois économiques et environnementaux (diminution des déchets alimentaires en augmentant la DLC, date limite de consommation). Dans ce domaine particulier, le défi est double: 1-limiter la croissance de la flore totale (pour éviter la prolifération responsable de la détérioration), et 2-préserver une certaine quantité de bactéries endogènes utiles pour une maturation favorable du produit alimentaire frais. L'effet attendu est donc davantage bactériostatique que purement antibactérien. Nous avons besoin de matériaux qui combinent à la fois des propriétés attractives et biocides. Dans ce contexte, les polymères cationiques stables sont particulièrement intéressants (faible CMI en solution, Concentration Minimale d'Inhibition). Le challenge ici sera de développer une méthode de greffage ou de fonctionnalisation robuste et efficace afin d’incorporer des polymères sur divers substrats tels que le verre, l'inox et en particulier, les polyoléfines qui sont largement utilisés dans les emballages alimentaires. Ce projet de thèse implique deux Laboratoires académiques: CEA/NIMBE-LICSEN, expert en chimie de surface et AgroParisTech/INRA-MICALIS spécialisé dans l'étude de la bio-adhésion et des biofilms. Des partenaires industriels sont également impliqués dans ce projet.

Matériaux poreux innovants pour l’analyse glycomique en milieu hospitalier.

SL-DRF-18-0235

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Laurent MUGHERLI

Martine Mayne

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Laurent MUGHERLI

CEA - DRF/IRAMIS/NIMBE/LEDNA

0169089427

Directeur de thèse :

Martine Mayne

CEA - DRF/IRAMIS/NIMBE/LEDNA

01 69 08 48 47

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=lmugherl

Labo : http://iramis.cea.fr/nimbe/ledna/

Voir aussi : http://joliot.cea.fr/drf/joliot/Pages/Entites_de_recherche/medicaments_technologies_sante/spi.aspx

La structure et la fonction des protéines peuvent être modulées par de nombreuses modifications structurales. La glycosylation est une des principales modifications post-traductionnelles, car on estime qu’environ 50% des protéines eucaryotes sont glycosylées, cette proportion pouvant atteindre 70% pour les protéines humaines. La glycosylation d’une protéine correspond à l’attachement d’un monosaccharide ou d’une chaîne oligosaccharidique à un ou plusieurs acides aminés constitutifs d’une protéine donnée. Il est désormais bien établi que la glycosylation des protéines est fortement modifiée lors de diverses pathologies comme le cancer ou la polyarthrite rhumatoïde. Ainsi, la nature et les proportions relatives des oligosaccharides liés aux protéines pourraient être utilisées comme paramètres déterminants pour diagnostiquer, pronostiquer voire suivre le développement de pathologies.



L’analyse glycomique consiste à établir le profil des oligosaccharides présents sur l’ensemble des glycoprotéines présentes dans un fluide biologique d’intérêt. Des techniques modernes et pointues sont indispensables pour l’analyse à haut débit et le traitement des données, mais la préparation des échantillons, tout aussi importante, se fait encore avec des méthodes souvent très chronophages. L’objectif de cette thèse est de montrer que l’utilisation de matériaux innovants appliqués à la préparation d’échantillons pour l’analyse glycomique constitue un moyen pertinent pour accélérer significativement le débit des analyses, et d’employer ces matériaux dans des études en lien avec le milieu hospitalier afin d’identifier de nouveaux biomarqueurs de pathologies.



Le projet de recherche consistera en l'élaboration et la caractérisation de deux types de matériaux, l’un présentant une fonction catalytique, l’autre une fonction de filtration. Plusieurs aspects seront traités, allant de la synthèse des matériaux à la caractérisation de leurs propriétés texturales et physico-chimique. Les matériaux biohybrides nanoporeux seront synthétisés par le procédé Sol-Gel, selon différentes formulations et mises en forme. Les fonctions des matériaux mis au point seront évaluées dans un protocole d’analyse glycomique en vérifiant l’obtention de profils oligosaccharidiques de biofluides (e.g. plasma, liquide céphalorachidien). La caractérisation physique sera l’occasion de pratiquer des techniques variées, telles que la profilométrie, le MEB/MET, ou la caractérisation des paramètres de porosité par l’établissement d’isothermes d’adsorption de gaz. L’analyse des oligosaccharides sera réalisée par spectrométrie de masse à haute résolution (essentiellement MALDI-TOF).



Pour ce projet de thèse pluridisciplinaire, nous recherchons un(e) étudiant(e) chimiste ou physico-chimiste, intéressé(e) par la chimie des matériaux et motivé(e) par les applications de la recherche fondamentale dans le domaine des nouvelles technologies pour la santé. La thèse devra idéalement débuter en octobre 2018 et sera effectuée dans deux laboratoires, le laboratoire édifices nanométriques pour la partie matériaux et le laboratoire d’étude du métabolisme et du médicament pour l’utilisation des matériaux en analyse glycomique. L’activité de recherche sera menée dans le centre de recherche de Saclay (91).

Nano-objets polymères radiosensibles

SL-DRF-18-0681

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Geraldine CARROT

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geraldine CARROT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Directeur de thèse :

Jean-Philippe RENAULT

CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Ce projet repose sur le développement de nouveaux systèmes de relargage de principes actifs basés sur la dégradation de polymères par irradiation. Ce type de stimulus n'a jamais été exploré auparavant, pour de telles applications. Cela permet d'envisager un vrai couplage radiothérapie/ chimiothérapie qui se différencie du simple relargage ciblé. L'objectif est de réaliser la synthèse d'une bibliothèque de copolymères amphiphiles originaux, avec un bloc polymère soluble dans l'eau/biocompatible, et un autre bloc hydrophobe/radiosensible. L'auto-assemblage dans des micelles ou des vésicules mènera à des objets avec un coeur radiosensible où sera localisé le principe actif. Le premier avantage de ces nouveaux systèmes est de contrôler plus finement le ciblage des principes actifs vers les cellules tumorales afin de limiter les effets secondaires liés à la chimiothérapie et la radiothérapie, via la position du faisceau d'irradiation et/ou les doses absorbées.

Réducteurs renouvelables à base de bore et de silicium pour la reduction du CO2

SL-DRF-18-0444

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l'Energie (LCMCE)

Saclay

Contact :

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Thibault CANTAT

CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Directeur de thèse :

Thibault CANTAT

CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : http://iramis.cea.fr/Pisp/thibault.cantat/index.html

Labo : http://iramis.cea.fr/Pisp/thibault.cantat/index.html

La valorisation de ressources carbonées renouvelables, telles que CO2 et la biomasse, nécessite l'utilisation de réducteurs réactifs, recyclables et efficaces en énergie. Le dihydrogène ne répond pas complètement à ce cahier des charges du fait de sa faible réactivité et de son potentiel rédox limité. Pour contourner ces limitations, l'utilisation des hydrures de bore et de silicium est une voie attrayante mais qui nécessite de développer des méthodes d'accès à ces réactifs qui soient énergétiquement viables. Tandis que ces composés sont actuellement produits via des procédés énergivores, le présent projet doctoral vise les premières méthodes de synthèse des hydrures de bore et de silicium par voie électrocatalytique.

 

Retour en haut