The synergy between theory and experiment in developing the basic science of new heteroaromatic systems
Anna Chrostowska
Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, Université de Pau & Pays Adour/ E2S UPPA
Jeudi 20/12/2018, 11:00-12:00
NIMBE Bat 127, p.26, CEA-Saclay

The problem that all chemists encounter more and more often concerns the choice of the most promising target molecule for a given set of specifications. The direct application of difficult, time-consuming, and expensive syntheses, without a deep prior analysis, is oftentimes not optimal. The constant back-and-forth dialectic between computations and experiments creates useful connections between theoretical knowledge and practical use of scientific achievements. This synergistic approach between high-level theory and experiment is now beeing applied more frequently to enhance our comprehension and conceptualization of new systems.
Ultraviolet photoelectron spectroscopy (UV-PES) is a well-established technique to provide ionisation energies of molecules in gas phase. Also, Flash vacuum thermolysis (FVT) or vacuum gas solid reactions (VGSR) coupled with UV-PES proved to be especially suited to generate and analyse in real-time small amounts of short-lived species. These experimental data supported by quantum calculations for the consistency of the assignments of PE spectra provide fundamental information about electronic structure and bonding that is obtained by no other technique. Representative examples to illustrate the advantages and wide applicability will be exclusively chosen from our research,[1–7] highlighting the synergy between computational electronic structure analysis and characterization by UV-photoelectron spectroscopy to develop a fundamental comprehension of physical and chemical properties of such emerging families of compounds.


REFERENCES
[1] A. Chrostowska, A. Dargelos, V. Lemierre, J.-M. Sotiropoulos, P. Guenot, J.-C. Guillemin, Angew. Chem. Int. Ed. 2004, 43, 873–875.
[2] J.-C. Guillemin, A. Chrostowska, A. Dargelos, T. X. M. Nguyen, A. Graciaa, P. Guenot, Chem. Commun. 2008, 4204–4206.
[3] A. Chrostowska, S. Xu, A. N. Lamm, A. Mazière, C. D. Weber, A. Dargelos, P. Baylère, A. Graciaa, S.-Y. Liu, J. Am. Chem. Soc. 2012, 134, 10279–10285.
[4] J. S. A. Ishibashi, J. L. Marshall, A. Mazière, G. J. Lovinger, B. Li, L. N. Zakharov, A. Dargelos, A. Graciaa, A. Chrostowska, S.-Y. Liu, J. Am. Chem. Soc. 2014, 136, 15414–15421.
[5] Z. Liu, J. S. A. Ishibashi, C. Darrigan, A. Dargelos, A. Chrostowska, B. Li, M. Vasiliu, D. A. Dixon, S.-Y. Liu, J. Am. Chem. Soc. 2017, 139, 6082–6085.
[6] J. S. A. Ishibashi, A. Dargelos, C. Darrigan, A. Chrostowska, S.-Y. Liu, Organometallics 2017, 36, 2494–2497.
[7] A. Chrostowska, C. Darrigan, in Organosilicon Compd., V. Ya Lee, Elsevier, 2017.

Contact : Corinne CHEVALLARD

 

 

Retour en haut