Andrew M. Jimenez, Dan Zhao, Kyle Misquitta, Jacques Jestin and Sanat K. Kumar

Understanding the structure and dynamics of the bound polymer layer (BL) that forms on favorably interacting nanoparticles (NPs) is critical to revealing the mechanisms responsible for material property enhancements in polymer nanocomposites (PNCs). Here we use small angle neutron scattering to probe the temporal persistence of this BL in the canonical case of poly(2-vinylpyridine) (P2VP) mixed with silica NPs at two representative temperatures. We have observed almost no long-term reorganization at 150 °C (∼Tg,P2VP + 50 °C), but a notable reduction in the BL thickness at 175 °C. We believe that this apparently strong temperature dependence arises from the polyvalency of the binding of a single P2VP chain to a NP. Thus, while the adsorption–desorption process of a single segment is an activated process that occurs over a broad temperature range, the cooperative nature of requiring multiple segments to desorb converts this into a process that occurs over a seemingly narrow temperature range.


Les matériaux composites, dont on peut faire judicieusement varier la composition, permettent de combiner les propriétés de ses constituants. Ainsi, l’ajout de matériaux inorganiques (ou charge) dans une matrice polymère permet d’améliorer les propriétés d’usage de ces matériaux, telles que leurs propriétés mécaniques, électriques ou optiques, et aussi d'alléger le matériau ou d'en diminuer le coût.

Dans l’industrie du pneumatique, et en particulier dans la formulation des bandes de roulement, on utilise ainsi des matrices élastomères que l'on renforce par des particules de silice. L'étude réalisée au LLB, en collaboration avec Michelin, montrent qu'il est possible de jouer sur les effets d'entropie de mélange et la balance des contributions entropique/enthalpique des interactions, pour piloter la dispersion des particules dans la matrice et contrôler les propriétés macroscopiques des matériaux.


Annelies Sels, Giovanni Salassa, Fabrice Cousin, Lay-Theng Lee, Thomas Bürgi,
Nanoscale 26 (2018) 12754.

Aromatic dithiol linkers were used to prepare aggregates of Au25(SR)18 clusters (SR: thiolate) via ligand exchange reactions. Fractions of different aggregate sizes were separated by size exclusion chromatography (SEC). The aggregates were characterized by UV-vis absorption spectroscopy, matrix assisted laser desorption ionization (MALDI) mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy (including diffusion-ordered spectroscopy, DOSY) and small angle X-ray scattering (SAXS).

At 2:1 cluster: dithiol ratio, small aggregates (dimers, trimers) and also larger aggregates consisting of 10-20 Au25 clusters were formed, according to DOSY, besides unreacted (monomeric) Au25(SR)18. MALDI mass spectrometry shows signals consistent with dimers and trimers (doubly charged). The SAXS curves for the small aggregates can be well fitted by a pearl-necklace model. For the bigger aggregates the SAXS curves evidence a characteristic separation distance between the clusters within the aggregates, which is imposed by the length of the linker. The SAXS curves of these larger aggregates can be well fitted with a core-shell sphere model with a sticky hard-sphere structure factor, in agreement with closely packed aggregates.

The absorption spectra of smaller aggregates resemble the one of individual Au25(SR)18 clusters; however, and most importantly, the larger aggregates show completely different, less structured spectra with a new band emerging at 840 nm. We assign this drastic change in the absorption spectra and the new band to the electronic coupling between the clusters through the all aromatic linker. In accordance with this view, aggregates formed with a linker containing methylene groups, thus breaking conjugation, do not show the band at 840 nm. By addition of monothiols to the larger aggregates their size can be reduced through an “unlinking” reaction. This reaction also affects the band at 840 nm, which moves to higher energy when reducing the aggregate size, as would be expected within a particle in a box model. The electronic coupling between the clusters through the linker is the basis for future applications in nanoelectronics.

Souha Ben Mahmoud, Wafa Essafi, Annie Brûlet and François Boué

The chain conformation in sulfonated polystyrene PSSNa of a degree of sulfonation 0.34 ≤ f ≤ 1, i.e., of various hydrophobicity, is followed in mixtures of water and increasing content of tetrahydrofuran (THF), a good solvent of the hydrophobic polystyrene moieties (which improves the solvent quality of the mixture). This is achieved by measuring the chain form factor by small-angle neutron scattering using the zero average contrast method (ZAC). Polymer concentrations 0.17 and 0.34 M correspond in our case to the semidilute regime or its limit with dilute regime depending on the chain conformation. The main result is the monitoring with added THF of the pearl necklace conformation. This heterogeneous structure, made of wormlike chain parts (strings) and pearls, was observed formerly in water: when f decreases, the string contribution decreases, and the pearls size, characterized by a maximum in Kratky q2S1(q) representation, slightly increases. Here we see that in the presence of increasing content of added THF (i) the pearls contribution decreases, as expected, and (ii) their size does not change by more than 10% in most cases (30% at the most). Among different modeling, the most complete has been done following the pearl necklace models of Schweins, Huber et al. and Lages, Huber et al.; beyond the size and distribution of pearls, it addresses the radius of gyration, the correlation distance between spheres, weakly visible, and, importantly their number N. The values of Rg, as well as the modeling, suggest that while the sphere size varies a few, N decreases clearly with added good solvent. A link with the simulation of Liao et al. can be found. A second result, important in practice, is that all modeling of the scattering establishes that THF addition makes vanish an excess of low q scattering due to large compact spheres present in water. A third result is obtained after a “THF treatment” procedure, consisting of adding THF and then removing it by evaporation: (i) the spherical aggregates are washed out, and (ii) the pearl necklace conformation of the chain returns to the one in water solution before treatment. Therefore, the pearl necklace conformation of the hydrophobic polyelectrolyte in aqueous solution appears to be in an annealed equilibrium state resulting from hydrophobic attraction and electrostatic repulsion.

DOI: 10.1021/acs.macromol.8b00990

Anne-Sophie Robbes, Fabrice Cousin , Florian Meneau, and Jacques Jestin

We probe by SANS the conformation of polymer chains of the matrix in various nanocomposites based on the same building blocks, namely spherical magnetic nanoparticles of maghemite (γ-Fe2O3) as fillers and polystyrene (PS) for the matrix. Given that the nanoparticles can be arranged in oriented chains during the processing by an external magnetic field and/or grafted by tethered PS chains with a grafting density of ∼0.15 chains/nm2, very different organizations of the nanofillers were tested according to different particle–polymer interactions: (i) homogeneous isotropic dispersion of aggregates of bare nanoparticles; (ii) chains of bare nanoparticles oriented along one direction over the whole sample; (iii) perfect dispersion of grafted nanoparticles; (iv) homogeneous isotropic dispersion of large aggregates of grafted nanoparticles; and (v) chains of large aggregates of grafted nanoparticles objects oriented along one direction over the whole sample. Measurements were performed by the extrapolation to the zero concentration method made possible by the fact that γ-Fe2O3 has the same neutron scattering length density (SLD) as a deuterated polystyrene, so that the nanoparticles scattering is matched in a deuterated PS matrix, whether they are grafted or not. This robust method enables to check that only the polymer chain form factor is effectively probed in a very accurate way. This allows us to show some deviations of the radius of gyration induced by the nanoparticles: (i) for the case of very weak interaction between the polymer and the bare particles, the radius of gyration is swollen by 16% whatever the filler dispersion and orientation; (ii) for the athermal interaction between grafted particles and polymer, the radius of gyration is either unchanged when particles are individually dispersed or compressed of almost 11% when particles are forming overlapped clusters. Despite the remaining relatively small deviations, this is to our best knowledge the first unambiguous experimental evidence on a single system of the influence of the well-known nanofiller dispersion onto the mean chain conformation in nanocomposites for different polymer–particles interactions ranging from attractive to repulsive.

Ce que nous révèle la structure des biominéraux...

Chez les organismes vivants, les processus de biominéralisation régulent la croissance des tissus minéralisés, tels que les dents, les os, les coquilles… Ces procédés restent fascinants à étudier pour une meilleure compréhension du monde naturel qui nous entoure et de sa diversité, d'autant plus que ces recherches peuvent contribuer à l'élaboration de procédés biomimétiques pour la réalisation de nouveaux matériaux.

Une équipe interdisciplinaire française, à laquelle participe l'équipe du LIONS de l'UMR NIMBE, s'est intéressée à la bio-formation du carbonate de calcium, dont la structure complexe est encore largement incomprise. La texture complexe de matériaux naturels, observés auprès du synchrotron de l'ESRF par une méthode originale de diffraction de rayons X développée par l'Institut Frenel, est décrite et les résultats publiés dans la revue "Nature Materials". Un point de départ pour comprendre l'élaboration de ce composé, et définir les conditions physiques, chimiques et biologiques nécessaires pour produire de façon synthétique ce type de biominéraux.

Le graphène est un matériau carbonné bidimensionnel aux propriétés structurales, électroniques et de conduction thermique originales que l'on cherche à exploiter. Au-delà de la simple utilisation de feuillets de graphène (pour l'électronique haute fréquence, ou en tant qu'anode d'accumulateurs...), d'autres applications sont aussi envisagées, pour lesquelles le feuillet de graphène doit être nanostructuré, pour améliorer ses propriétés optiques ou catalytiques ou permettre la réalisation de capteurs ciblés.

Une collaboration du LSI avec des équipes italiennes de l’Université de Bologne et du Politecnico de Turin, ainsi que l’équipe allemande de l’accélérateur d’ions lourds du GSI (Darmstadt) propose une technique originale d'irradiation aux ions lourds rapides d'un monofeuillet de graphène pris en sandwich dans un système multicouche polymère-graphène-cuivre. Le traitement chimique, mis au point au LSI, rend possible l’obtention d’un graphène nanoporeux 2D supporté, robuste et facilement manipulable. La méthode de synthèse nécessite peu d’étapes et est facilement industrialisable sur de grandes surfaces.

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.


Les vésicules, simples compartiments dont la membrane isole deux milieux aqueux, sont proposées comme nano-réacteurs chimiques ou comme vecteurs pouvant transporter et délivrer à un emplacement ciblé des molécules d’intérêt, en imitation de fonctions biologiques (l'étude de l'échange entre cellules via des vésicules est l'objet du Prix Nobel de Physiologie-Médecine 2013). Constituée d'une simple membrane, une vésicule représente aussi un modèle grossier, mais le plus simple, d’une cellule biologique.

La présente étude a porté sur des vésicules encloses par une membrane composée de copolymères auto-assemblés (polymersomes), dont les propriétés de résistance mécaniques et de perméabilité sont très élevées. Ce travail de recherche, en collaboration entre une équipe du SIS2M et une de l'Université de Bordeaux-ENSBCP, publié dans ACS Nano, montre que des polymersomes faits de copolymères diblocs peuvent former des vésicules à double parois, sous l'effet des contraintes intenses subies lors d'un choc osmotique (comme celui qu'elle peuvent recevoir lors d'une injection dans un liquide riche en espèces chimiques comme le sang).

Ces effets ont été largement explorés, car la forme des vésicules est un paramètre essentiel de la bio-distribution et de l'internalisation cellulaire (endocytose), pour lesquelles les polymersomes sont d’excellents candidats à l’heure actuelle.


Stabiliser des gouttes d’huile dans l’eau n'est pas si simple, ces deux liquides ayant une tendance naturelle à se séparer afin de minimiser l'aire de leur interface de contact. Ceci est pourtant indispensable dans la vectorisation de certains médicaments, ou la réalisation de crèmes en cosmétique. Inversement, on peut aussi rechercher à empêcher la dissolution de particules actives et solubles dans un solvant. Dans ce cadre, la dispersion contrôlée de gouttelettes, stabilisées dans l’eau par des méthodes de nanostructuration, fait partie des approches possibles.

Des chercheurs du CEA, de l’ECE-Paris, du CNRS et de l’Université Paris-sud ont réalisé un travail innovant sur cette problématique, en explorant par des techniques de diffusion de neutrons, la distribution de gouttelettes au sien d'un colloïde, stabilisé de façon originale par l'association de deux principes : la dispersion de particules cristallisées en milieu organique, et leur stabilisation dans l’eau par un enrobage avec des particules d'argiles nanométriques. Ce travail présenté dans Soft Matter du 28 octobre 2012 ouvre de nouvelles perspectives d’applications susceptibles d’intéresser les entreprises pharmaceutiques ou de cosmétiques.


Savoir graver des nanostructures de manière simple et économique est un enjeu primordial en microélectronique ou pour de futures applications optiques. Les nanostructures obtenues par auto-assemblage de molécules permettent d’atteindre aisément les résolutions souhaitées (~ qques 10 nm), mais il faut savoir maitriser leur orientation et éliminer les nombreux défauts inhérents à ce type d'organisation spontanée. Pour les structures obtenues par séparation de phases de copolymères diblocs, ces objectifs peuvent être atteints en contraignant une mince couche de copolymères par impression avec un moule nanostructuré. Cette méthode simple et les principes qui la fondent viennent d’être publiés dans Advanced Materials.


Contact CEA : Pascal Boulanger

Une dizaine d'année après leurs premières synthèses en laboratoire, les tapis de nanotubes de carbone alignés sont envisagés dans de nombreux domaines d’applications (membranes de filtration, composants électroniques passifs et actifs, matériaux composites,…) combinant propriétés individuelles des nanotubes et nano-structuration spécifique. Mais le développement de ces applications demande une méthode de synthèse industrielle, sûre, peu chère et applicable sur de grandes surfaces. Dans cette marche vers le produit technologique, l'équipe du SPAM vient de franchir un pas important en maîtrisant la production de tapis de nanotubes alignés, aux propriétés contrôlables (longueur et diamètre des tubes, densité) et d'une grande homogénéité sur des surfaces de grande taille. Ce résultat est le fruit d’un effort de recherche fondamental soutenu, depuis plusieurs années par cette équipe pionnière, vers une meilleure compréhension des mécanismes de croissance de telles nanostructures

Jacques Jestin, Nicolas Jouault, Chloé Chevigny, François Boué, Laboratoire Léon Brillouin, CEA Saclay

Un moyen d'améliorer les propriétés mécaniques des matériaux plastiques est de les renforcer par des nanoparticules, en formant ainsi un matériau composite. Une étude structurale détaillée par diffusion de neutrons, couplée à des essais mécaniques, d'échantillons de polystyrène renforcés par des grains de silice a été réalisée au Laboratoire Léon Brillouin (LLB) au CEA Saclay. Cette étude montre toute l'importance de savoir maîtriser la distribution des particules entrant dans la composition du matériau. Une solution originale au problème par le greffage de petites chaînes de polymère à la surface des particules est aussi étudiée. Cette étude modèle trouve de nombreuses applications, en particulier dans le domaine du pneumatique.


Contact : P. Viel

L'étude de molécules complexes ou de matériaux biologiques individuels nécessite de  savoir immobiliser ces objets sans altérer leurs fonctions actives. A l'image des bandes de papier tue-mouches ou plus précisément comme un scotch double face d'épaisseur moléculaire, le LCSI a développé des surfaces possédant des propriétés auto-adhésives capables de "coller" un grand nombre de matériaux organiques, minéraux et même biologiques. La fonctionnalisation de la surface du substrat est obtenue par le greffage pérenne de monocouches moléculaires robustes.


Des chercheurs du Laboratoire de chimie et biologie des métaux (CEA-CNRS-Université J. Fourier, au CEA de Grenoble), du Laboratoire de chimie des surfaces et interfaces (CEA de Saclay) ainsi qu'une équipe du Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux (CEA de Grenoble) ont combiné nanosciences et chimie bio-inspirée pour élaborer, pour la 1ère fois, un matériau capable de catalyser sans platine aussi bien la production d'hydrogène que son utilisation dans les piles à combustible.

Ce résultat, majeur dans la perspective d'une économie de l'hydrogène, plus compétitive, fait l'objet d'une publication dans la revue Science.

D. Kopetzki, Y. Michina, T. Gustavsson, D. Carrière

Les molécules amphiphiles présentent une tête hydrophile et une chaîne hydrophobe. Sous certaines conditions, elles peuvent s'auto-organiser sous forme de vésicules sphériques creuses emprisonnant un cœur aqueux dans une bicouche de tensioactif, le diamètre de l'ensemble variant de quelques dizaines de nanomètres à plusieurs microns. En choisissant soigneusement les conditions de croissance, les chercheurs du SIS2M montrent que l'on peut synthétiser des vésicules extrêmement robustes avec des propriétés d'encapsulation originales.

Ces systèmes sont largement étudiés pour de nombreuses problématiques fondamentales (mécanisme d'auto-assemblage, propriétés physiques de la membrane, etc...) dont la compréhension peut ouvrir de nouvelles perspectives (libération contrôlée de principes actifs, nano-réacteurs chimiques, conversion d'énergie, etc...). Usuellement, ces vésicules (dans ce cas aussi appelées "liposomes") sont formées à partir de phospholipides, constituants des membranes cellulaires. Il serait avantageux de les remplacer par des molécules aux propriétés semblables mais avec des fonctions chimiques plus facilement modifiables ou disponibles, telles que les vésicules formées à partir d'acides gras. Si l'on sait effectivement former de telles vésicules d'acides gras dans des conditions précises de température et de pH, il faut cependant trouver le moyen de les stabiliser : elles sont en effet très sensibles aux conditions externes et se détruisent aisément pour donner des micelles ou des cristaux.

J. Charlier, A. Ghorbal, F. Grisotto, S. Palacin

Le développement et la réalisation de dispositifs en micro- et bio-électronique nécessite souvent de déposer des couches de substances organiques sur des surfaces conductrices ou semi-conductrices. Pour ceci l'accroche chimique (ou greffage) est très efficace. La miniaturisation souhaitée des composants demande de pouvoir réaliser aujourd'hui ce greffage de façon très localisée, à l'échelle du micron, voire sub-micronique.

Pour lier de façon localisée une molécule à une surface, on expose usuellement la surface macroscopique d'un substrat à de très faibles quantités de solution. La localisation peut aussi être assistée par un faisceau lumineux ou une chimie spécialisée. La plupart de ces techniques requièrent de nombreuses étapes de transformation et leur mise en œuvre est souvent fastidieuse et onéreuse. Dans ce contexte, nous montrons qu'il est possible par une démarche originale d'effectuer un greffage local en une seule étape, ne nécessitant aucune technique de masquage et à base de technologies légères de faible coût.

Nous avons montré récemment [1-4] qu'il était déjà possible de décorer, localement et en une seule étape, par un film organique (électro-greffage de monomères vinyliques), la surface d'un échantillon composite présentant des zones de conductivité différente (Au/Si, Si/Si dopé). La sélectivité spatiale du dépôt est obtenue dans ce cas en jouant simplement sur le potentiel imposé, qui permet de promouvoir le transfert électronique (et donc le greffage du polymère) vers l'une des surfaces à l'exclusion de l'autre. Le motif prédéfini est ainsi parfaitement respecté, avec une résolution latérale uniquement limitée par l'épaisseur du film (de quelques nm à quelques centaines de nm).

V. Padmanabhan, J. Daillant, L. Belloni, S. Mora, M. Alba, and O. Konovalov

ESRF Highlights 2007

The study of aqueous salt solutions continues to attract various research groups because of their fundamental importance in various physicochemical, biological and atmospheric processes. The air/water interface plays a crucial role in such processes and differs to a large extent when compared to bulk. To further understand the role of the interface, direct access to the surface excess or the knowledge of the concentration profiles of ions will not only improve our present understanding but also help to predict the properties associated with it. Ions, though of the same valency, tend to interact differently with proteins (salting in or salting out as predicted by Hofmeister) or differ in their degree of adsorption at the air-water interface. In recent times, there have been considerable efforts by various research groups using different sophisticated surface sensitive probes to understand the organisation of the ions and its impact on the solvent features and also through molecular dynamic simulation.

D. Sen, O. Spalla, O. Taché, P. Haltebourg, A. Thill

ESRF Highlights 2007

The synthesis of ordered, homogeneous porous grains is an expanding area of materials research. One strategy for their formation is to dry the spray of a complex mixture containing nanoparticles and templating agents [1]. In this process, a continuous flow of micrometric droplets, made from the initial dilute solution, is dried along a hot tube in order to evaporate the solvent. Self-organisation of the constituents takes place during the evaporation. Organic moieties can even be removed via further calcination. The local structure of the final grains strongly depends on the initial compositions. Small-angle X-ray scattering can be used to investigate the ordered structural features of the final spray-dried grains at the nanometric scale [2]. However, the morphology of the grains at a larger scale depends critically on the kinetics of drying.

Two different regimes may be distinguished for the solvent evaporation from a complex nanoparticles solution confined in a droplet. Firstly, when the evaporation front moves faster than the time required for a particle to diffuse on the length scale of the drop, the grains may be heterogeneous. The final grains can be doughnut-like or even core-shell with an empty space inside, which has sometimes been observed by scanning electron microscopy (SEM). Secondly, when the drying is slower than the characteristic diffusion time of the nanoparticles, the evaporation occurs in a quasi equilibrium distribution of the nanoparticles inside the droplet and the formation of a dense spherical grain is anticipated.

For a solution containing a mixture of 5 nm silica nanoparticles with 50 nm polybromostyrene sulfonate we found that a large proportion of doughnuts were obtained, even when a slow evaporation rate was used (Peclet number Pe = dif/evap = 0.01). One of the doughnuts is shown Figure 59. Together with the sphere-doughnut transition, the inner homogeneity of this type of material remains a crucial question for their further applications.

A l’heure où nous nous interrogeons sur les réserves de combustibles fossiles de notre planète et sur les conséquences de l’effet de serre sur le réchauffement du globe, l’hydrogène est considéré comme le vecteur énergétique d’avenir pour les transports. Les recherches conduites par le CEA portent sur toutes les étapes de cette filière : production, stockage, transport, distribution et utilisation. Dans cette filière, l'hydrogène produit à partir d'énergie primaire, solaire, nucléaire, éolien, chimique... est embarqué dans le réservoir du véhicule et une pile à combustible, élément permettant la conversion propre (sans émission de CO2) de l'énergie chimique en énergie électrique, associée à un moteur électrique remplace alors le moteur à essence de nos voitures.

Parmi les différents types de piles adaptées aux applications de transport, les plus intéressantes sont de type PEMFC (Proton Exchange Membrane Fuel Cell). Ces piles contiennent en particulier une membrane polymère capable de jouer le rôle d’électrolyte solide. Dupont De Nemours commercialise une membrane à base de polymère perfluoré sulfoné, le Nafion®. Cette membrane présente cependant quelques inconvénients comme une autonomie médiocre (< 5000h de fonctionnement), une fragilité mécanique, l’incapacité à fonctionner en milieu anhydre… L’équipe des "Polymères Irradiés" du LSI essaie de répondre à ces problèmes en proposant un nouveau type de membrane.

P. Viswanath, J. Daillant, L. Belloni, M. Alba, DRECAM/SCM - Service de Chimie Moléculaire
S. Mora (LCVN, Montpellier) et O. Konovalov (ESRF)

Fiche fait marquant au format PDF

Dissoudre du sel (NaCl) dans l'eau n'est pas anodin. En solution, le sodium et les chlore se séparent sous forme ionique Na+ et Cl-, s'entourent de molécules d'eau et se dispersent. Ceci modifie profondément la nature du solvant qui devient ainsi, par exemple, bon conducteur. Au niveau de la surface, la distribution des ions reste cependant encore très mal connue, bien que de nombreuses propriétés "de contact" en dépendent.

Ainsi, pourquoi HCl diminue-t-il la tension de surface de l'eau alors que NaCl l'augmente? Pourquoi KCl est-il deux fois plus efficace que NaCl pour cristalliser le lysozyme(i) ? Les questions de ce type, qui illustrent la spécificité ionique, abondent en biologie, science de l'environnement et de l'atmosphère, sciences des matériaux, physico-chimie… Ces effets, dont certains ont été décrits dès les travaux de Hofmeister en 1888 [1], n'ont cependant toujours pas trouvé d'explication globale. Jusqu'à présent, seules des lois empiriques ont pu être dégagées à partir d'observations généralement macroscopiques. La difficulté tient à ce que ces effets sont dus essentiellement à des couplages forts à très courte portée (en dessous du nanomètre) entre ions et molécules de solvant, et au manque de mesures de profils ioniques aux interfaces.
G. Rizza, DRECAM/Laboratoire des Solides Irradiés, Ecole Polytechnique

Les applications des nanoparticules sont nombreuses mais dépendant généralement de leur taille. Ainsi, les propriétés optiques (réflectivité sélective, absorption, propriétés optiques non linéaires) d’un matériau diélectrique peuvent être modifiées en introduisant dans la matrice hôte des particules métalliques de taille nanométrique bien définie. Contrôler la taille, la morphologie et l’environnement chimique des nanoparticules, permet de modifier par exemple de façon contrôlée la valeur de la résonance du plasmon de surface et donc les propriétés macroscopiques de la matrice hôte.

N. Malikovaa, A. Cadènea, V. Marrya, E. Duboisa, P. Turqa, J.-M. Zanottib, S. Longevilleb,

aLaboratoire Liquides Ioniques et Interfaces Chargées, CNRS et Univ. P&M Curie
bLaboratoire Léon Brillouin, CEA-CNRS

On trouve très tôt des traces de l’utilisation des argiles dans les activités humaines : poterie et matériaux de construction bien sûr, mais aussi fabrication de papier et de médicaments... Ces premiers artisans ne l’auraient probablement pas formulé de la sorte, mais d’un point de vue physicochimique, les argiles sont des matériaux stratifiés à grains fins, dont la structure locale leur confère de remarquables propriétés de rétention d’eau et d’échange ionique (Fig.1).

M. Pinault1, M. Mayne-L'Hermite1, C. Reynaud1 ,H. Khodja2 ,V. Pichot3 , P. Launois3

1CEA Saclay - DSM/IRAMIS/Service des Photons, Atomes et Molécules - Laboratoire Francis Perrin
2CEA Saclay - DSM/IRAMIS/Laboratoire Pierre Sue
3Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris Sud, 91405 Orsay



Retour en haut