21 sujets IRAMIS/NIMBE

Dernière mise à jour :


• Biotechnologies, nanobiologie

• Chimie

• Chimie physique et électrochimie

• Interactions rayonnement-matière

• Matière ultra-divisée, physico-chimie des matériaux

• Physique atomique et moléculaire

• Simulation numérique

• Stockage électrochimique d’énergie dont les batteries pour la transition énergétique

• Technologies pour la santé et l’environnement, dispositifs médicaux

 

Désoxygénation photocatalytique d’esters gras : vers la production d’alcanes biosourcés

SL-DRF-24-0431

Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Lucile ANTHORE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Lucile ANTHORE
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 91 59

Directeur de thèse :

Lucile ANTHORE
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 91 59

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=lanthore

Labo : https://iramis.cea.fr/Pisp/thibault.cantat/

Les alcanes sont des molécules essentielles au secteur énergétique (carburants) comme en chimie de spécialité (cosmétiques, adhésifs…) ou en chimie fine. Aujourd’hui, ils sont essentiellement issus de ressources fossiles non renouvelables et leur utilisation participe au dérèglement climatique par la production de dioxyde de carbone. Pour atteindre un objectif de neutralité carbone, produire des alcanes à partir de sources de carbone renouvelables comme la biomasse apparaît donc comme une alternative intéressante. Dans la biomasse, les esters gras de type RCO2R’ présentent de longues chaînes alkyles mais la présence d’atomes d’oxygène ne leur permet pas de se substituer directement aux alcanes pétrosourcés.

L’objectif de cette thèse est de développer des systèmes catalytiques homogènes permettant la désoxygénation photocatalytique d’esters en alcanes correspondant, pas simple extrusion d’une molécule de CO2. L’énergie nécessaire à la réaction de réduction sera ainsi apportée par la lumière. Au cours de l’ensemble de ce projet de thèse, l’accent sera mis sur le développement des systèmes catalytiques et la compréhension des mécanismes réactionnels grâce à des études expérimentales (cinétiques, études RMN, observation des intermédiaires réactionnels…) associées à la chimie théorique (calculs DFT).
Simulation des nano-objets en milieu biologique

SL-DRF-24-0362

Domaine de recherche : Biotechnologies, nanobiologie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Yves BOULARD

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Yves BOULARD
CEA - DRF/JOLIOT/I2BC/

+33 169083584

Directeur de thèse :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

La compréhension des interactions non spécifiques ou spécifiques entre les biomolécules et les nanomatériaux est la clé du développement de nanomédicaments et de nanoparticules sûres. En effet, l'adsorption des biomolécules est le premier processus qui se produit après l'introduction de biomatériaux dans le corps humain ce qui contrôle leur réponse biologique. Dans le cadre de cette thèse, nous entreprendrons la simulation de l'interface nanosystème-biomolécules à l’échelle de la centaine de nanomètres en utilisant les nouveaux moyens de calcul exascale disponibles au CEA à partir de 2025 (machine Jules Verne installée au CCRT).
Coupures catalytiques de liaisons C–O et C-N appliquées à la transformation et la dépolymérisation réductrice de déchets plastiques

SL-DRF-24-0379

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Jean-Claude Berthet

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Claude Berthet
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 60 42

Directeur de thèse :

Jean-Claude Berthet
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 60 42

Page perso : https://iramis.cea.fr/Pisp/thibault.cantat/JeanClaude_Berthet.php

Labo : https://iramis.cea.fr/Pisp/thibault.cantat/research.php

Voir aussi : https://iramis.cea.fr/nimbe/LCMCE/

Le recyclage et la valorisation chimique des plastiques sont des étapes nécessaires et cruciales pour accélérer la transition vers une économie circulaire et diminuer la pollution liée à ces matières.

Le but de ce projet est de développer des systèmes catalytiques permettant de dépolymériser des matières plastiques oxygénées et azotées en leurs monomères ou en produits dérivés (alcools, amines, halogénures, voire hydrocarbures). Ces méthodes, permettant de récupérer en conditions douces la matière carbonée des polymères sous forme de produits chimiques utiles pour l’industrie chimique sont encore peu développées et seront, à l’avenir, des voies de traitements vertueuses de recyclage de certaines matières plastiques.
Le présent projet doctoral vise au développement et à l’utilisation de nouveaux complexes moléculaires métalliques (Aluminium, zirconium, terres rares, etc…) et des catalyseurs organiques (à base de bore),

• qui soient simples, peu chers, recyclables et plus sélectifs que ceux actuels (composés d'iridium, de ruthénium et bore), pour dépolymériser différentes variétés de plastiques (polyesters, polycarbonates, polyuréthanes et polyamides),
• qui permettent, dans le cas de catalyse réductrice, l’emploi d’hydrosilanes et hydroboranes mais aussi l’utilisation de nouveaux agents réducteurs agissant par hydrogénation par transfert.

Enfin, nous considèreront également l’emploi d’anhydrides organiques pour transformer les plastiques en composés organiques réactifs utiles en chimie organique.
Matériaux poreux intégrés dans des dispositifs pour l’analyse glycomique en milieu hospitalier.

SL-DRF-24-0442

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc MALEVAL

Martine Mayne

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marc MALEVAL
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084933

Directeur de thèse :

Martine Mayne
CEA - DRF/IRAMIS/NIMBE

01 69 08 48 47

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mmaleval

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

La glycomique consiste à identifier les oligosaccharides (OS) présents dans un fluide biologique en tant que source de biomarqueurs en vue de diagnostiquer diverses pathologies (cancers, maladie d’Alzheimer, etc.). Pour étudier ces OS, la préparation d’échantillon comporte 2 phases clés, le clivage enzymatique (coupure de la liaison entre les OS et les protéines) suivi d’une purification et extraction (séparation des OS et des protéines). Cependant, les matériaux actuellement utilisés dans les protocoles imposent de nombreuses étapes manuelles et chronophages, incompatibles avec une analyse à haut débit.

Dans ce contexte, le LEDNA, laboratoire spécialisée dans le domaine des matériaux a récemment développé un procédé sol-gel de fabrication de Monolithes à Porosité Hiérarchisée (HPMs) dans des dispositifs miniaturisés. Ces matériaux ont permis d’obtenir une preuve de concept démontrant leur intérêt pour la seconde étape de l’analyse glycomique, i.e. la purification et l’extraction des oligosaccharides. Le LEDNA souhaite désormais améliorer la première étape correspondant à la coupure enzymatique devenue limitante dans le processus d’analyse glycomique. La fonctionnalisation de matériaux poreux, notamment d’HPMs avec de l’enzyme rendrait ainsi possible une préparation d’échantillon simple en à peine quelques heures avec une unique étape.

L’objectif de cette thèse est donc de montrer que l’utilisation de matériaux poreux présentant une fonction double, catalytique et de filtration, appliqués à la préparation d’échantillons pour l’analyse glycomique constitue un moyen pertinent pour simplifier et accélérer l’analyse glycomique, ainsi que de les employer dans des études en lien avec le milieu hospitalier afin d’identifier de nouveaux biomarqueurs de pathologies.

Le projet de recherche consistera à élaborer un dispositif intégrant des matériaux poreux présentant une fonction catalytique et de filtration. Pour ce faire, plusieurs aspects seront traités, allant de la synthèse et de la mise en forme de ces matériaux jusqu’à leur caractérisation de leurs propriétés texturales et physico-chimique. Un travail important sera porté sur l’immobilisation de l’enzyme. Le(s) prototype(s) les plus prometteurs seront évaluées dans un protocole d’analyse glycomique en vérifiant l’obtention de profils oligosaccharidiques de biofluides humain (plasma, lait). Les caractérisations physico-chimiques seront l’occasion de pratiquer des techniques variées (MEB, MET, etc.) ou encore la caractérisation des paramètres de porosité (adsorption d’azote, porosimètre Hg). L’analyse des oligosaccharides sera réalisée par spectrométrie de masse à haute résolution (essentiellement MALDI-TOF).

Pour ce projet de thèse pluridisciplinaire, nous recherchons un(e) étudiant(e) chimiste ou physico-chimiste, intéressé(e) par la chimie des matériaux et motivé(e) par les applications de la recherche fondamentale dans le domaine des nouvelles technologies pour la santé. La thèse sera effectuée dans deux laboratoires, le LEDNA pour la partie matériaux et le LI-MS pour l’utilisation des matériaux en analyse glycomique. L’activité de recherche sera menée dans le centre de recherche de Saclay (91).
Nouvelles membranes à base de nanofeuillets bidimensionnels

SL-DRF-24-0510

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Jean-Christophe Gabriel

Date souhaitée pour le début de la thèse : 01-03-2024

Contact :

Jean-Christophe Gabriel
CEA - DRF/IRAMIS/NIMBE/LICSEN

0676043559

Directeur de thèse :

Jean-Christophe Gabriel
CEA - DRF/IRAMIS/NIMBE/LICSEN

0676043559

Page perso : https://iramis.cea.fr/Pisp/jean.gabriel/

Labo : https://iramis.cea.fr/nimbe/licsen/

Voir aussi : https://iramis.cea.fr/nimbe/

Ce projet de thèse vise à exfolier de nouvelles architectures nanostructurées à bases de phases inorganiques bidimensionnelles. Ces nanostructures seront conçues pour des dispositifs de filtration et testées sur notre plateforme microfluidique. L'application visée est la purification de l'eau et la séparation sélectives des ions métalliques. Le doctorant interagira avec des chimistes, des physiciens et des électrochimistes dans un véritable environnement pluridisciplinaire, sur un sujet de recherche fondamentale directement connecté à des besoins applicatifs. Ainsi, lors de sa thèse l’étudiant sera exposé à un environnement pluridisciplinaire et amené à réaliser des expériences dans des domaines variés tels que la chimie inorganique, la physico-chimie, la micro/nano-fabrication et les méthodes de nano-caractérisation. Dans ce contexte, ce projet devrait potentiellement aboutir à des retombées sociétales significatives.

Pour la réalisation de ces dernières, il aura accès à une gamme très large et variée d’équipements allant du microscope optique au synchrotron de dernière génération (ESRF), en passant par les microscopes à effet de champs ou électroniques et les galvanostats.

Cette thèse est donc une excellente opportunité de croissance professionnelle tant d’un point de vue de vos connaissances, que de vos savoir-faire.
RMN hyperpolarisée en continu à base de parahydrogène et de catalyseurs greffés

SL-DRF-24-0590

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM)

Saclay

Contact :

Gaspard HUBER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Gaspard HUBER
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 64 82

Directeur de thèse :

Gaspard HUBER
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 64 82

Page perso : https://iramis.cea.fr/Pisp/gaspard.huber/

Labo : https://iramis.cea.fr/nimbe/

Voir aussi : https://iramis.cea.fr/Pisp/104/stephane.campidelli.html

La résonance magnétique nucléaire (RMN) est une robuste technique d'analyse, non invasive. Elle apporte de précieuses informations sur les réactions chimiques, qui sont ainsi mieux caractérisées et donc optimisées. Cependant la RMN est peu sensible, et les solutés peu concentrés, comme des intermédiaires de réaction, peuvent être inobservables par RMN classique. Une des méthodes connues pour augmenter drastiquement mais temporairement la sensibilité de la RMN consiste à créer un état d'hyperpolarisation dans le système de spins nucléaires, c'est-à-dire une polarisation bien supérieure à celle accessible avec les champs magnétiques dont on dispose. Une méthode d'hyperpolarisation emploie les propriétés particulières du parahydrogène. Elle nécessite l'emploi d'un catalyseur visant à ajouter le parahydrogène sur une liaison multiple ou un métal.

Le sujet de thèse consiste à investiguer l'apport conjoint de (i) l'hyperpolarisation à base de parahydrogène [1], (ii) un greffage du catalyseur adéquat sur des nanoparticules [2], et (iii) un mode d’analyse en continu [3] pour détecter et identifier des intermédiaires de réaction, des thématiques pour lesquels le laboratoire a acquis de l'expérience. Ce sujet implique un fort investissement en instrumentation, mais aussi des compétences en chimie de synthèse et en RMN.

La thèse se déroulera au sein du NIMBE, une unité mixte CEA/CNRS du CEA Saclay. La RMN hyperpolarisée et la synthèse auront lieu sous la responsabilité respective de de Gaspard HUBER, du LSDRM, et de Stéphane CAMPIDELLI, du LICSEN. Ces deux laboratoires du NIMBE sont situés dans des bâtiment très proches.

Reférences :
[1] Barskiy et al, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 33, 114-115,.
[2] Hijazi et al., Org. Biomol. Chem., 2018, 16, 6767-6772.
[3] Carret et al., Anal. Chem. 2018, 90, 11169-11173.
Synthèse et propriétés de nanoparticules de graphène hydrosolubles

SL-DRF-24-0013

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Stéphane CAMPIDELLI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Directeur de thèse :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Page perso : http://iramis.cea.fr/Pisp/stephane.campidelli/

Labo : http://iramis.cea.fr/nimbe/licsen/

Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).

Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous attacherons particulièrement à rendre ces matériaux solubles dans l'eau afin de tester leurs propriétés en milieu biologique. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.
Electrodes poreuses à base de nanodiamants pour la production photoélectrocatalytique de carburants solaires

SL-DRF-24-0426

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Jean-Charles ARNAULT

Hugues GIRARD

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Directeur de thèse :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=jarnault

Labo : https://iramis.cea.fr/nimbe/ledna/

Parmi les semi-conducteurs à l'échelle nanométrique, les nanodiamants (ND) n'ont pas encore été réellement pris en compte pour les réactions photoélectrocatalytiques dans le domaine de l'énergie. Cela s'explique par la confusion avec le diamant monocristallin qui présente une large bande interdite (5,5 eV) ce qui nécessite une illumination UV profonde pour initier une photoréactivité. À l'échelle nanométrique, les ND contiennent des défauts natifs (carbone sp2, impuretés chimiques telles que l'azote) qui peuvent créer des états énergétiques dans la bande interdite du diamant, ce qui réduit l'énergie lumineuse nécessaire pour amorcer la séparation des charges. En outre, la structure électronique du diamant peut être fortement modifiée (sur plusieurs eV) en jouant sur ses terminaisons de surface (oxydées, hydrogénées, aminées), ce qui peut ouvrir la voie à des alignements de bandes optimisés avec les espèces à réduire ou à oxyder. En combinant ces atouts, le ND devient alors compétitif avec d'autres semi-conducteurs pour des photoréactions. L'objectif de ce doctorat est d'étudier la capacité des nanodiamants à réduire le CO2 par photoélectrocatalyse. Pour atteindre cet objectif, des électrodes seront fabriquées à partir de nanodiamants avec différents chimies de surface (oxydés, hydrogénés et aminés), soit en utilisant une approche conventionnelle de type encre, soit une approche plus innovante qui résulte en un matériau poreux comprenant des nanodiamants et une matrice déposée par PVD. Les performances (photo)électrocatalytiques sous illumination visible de ces électrodes à base de nanodiamants pour la réduction du CO2 seront alors étudiées en termes de taux de production et de sélectivité, en présence ou non d'un co-catalyseur moléculaire macrocyclique à base de métaux de transition.
Plaques bipolaires innovantes par impression 3D pour l’application PEMFC

SL-DRF-24-0244

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Mélanie FRANCOIS

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Mélanie FRANCOIS
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169089191

Directeur de thèse :

Bruno JOUSSELME
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=MF276647

Labo : https://iramis.cea.fr/nimbe/LICSEN/

Pour répondre à la demande énergétique croissante et diversifier le panel de ressources, l’hydrogène apparait comme un vecteur prometteur d’énergie propre et durable. Ce travail de thèse a pour objectif de contribuer au développement des piles à combustible à membrane échangeuse de proton (PEMFCs) et plus particulièrement des plaques bipolaires (PBs) qui assurent la distribution des gaz et la collection du courant. Dans un premier temps, des PBs en acier inoxydable seront conçues et fabriquées par impression 3D (procédé SLM – Selective Laser Melting). Plusieurs architectures de canaux seront élaborées et caractérisées, notamment in-situ en combinaison avec des assemblages membrane-électrode (AME). En parallèle, différents revêtements anticorrosion, tant organiques qu’inorganiques, seront développés. Ces revêtements seront caractérisés, notamment du point de vue de leur résistance à la corrosion, par des méthodes électrochimiques (courbes de polarisation et spectroscopie d’impédance). Ces travaux permettront de comprendre d’un point de vue fondamental les mécanismes et les paramètres limitant les performances des PEMFCs.
Simulations ab initio de catalyseurs pour la chimie verte

SL-DRF-24-0302

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM)

Saclay

Contact :

Rodolphe POLLET

Patrick BERTHAULT

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Rodolphe POLLET
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 37 13

Directeur de thèse :

Patrick BERTHAULT
CEA - DRF/IRAMIS/NIMBE/LSDRM

+33 1 69 08 42 45

Page perso : https://iramis.cea.fr/Pisp/rodolphe.pollet/

Labo : https://iramis.cea.fr/nimbe/lsdrm/

La catalyse est aujourd’hui au cœur des procédés industriels de la chimie. Par exemple, la conversion d’un nitrile vers un amide, qui donne lieu à des applications industrielles en pharmacologie, en agrochimie, en chimie de synthèse, ou en chimie des polymères, par hydratation nécessite un catalyseur efficace en raison de sa lente cinétique. Pour des raisons autant environnementales que sociétales, l’un des enjeux majeurs aujourd’hui est de découvrir des catalyseurs sans métaux de transition, non toxiques, non corrosifs, et disponibles à un coût modéré. Un exemple de catalyseur remplissant ces critères est l'hydroxyde de choline.

Pour cette thèse, l’étudiant sera formé à la technique de simulation par dynamique moléculaire ab initio couplée à une méthode qui permet de reconstruire le paysage d’énergie libre de la réaction d'hydratation de différents nitriles aromatiques en faisant varier les conditions de l’expérience in silico. Il devra aussi effectuer en amont des calculs de chimie quantique permettant de décrire l’ensemble des interactions inter et intramoléculaires existantes. Cette approche a déjà été utilisée avec succès au sein de notre laboratoire pour décrire d’autres réactions chimiques en solution aqueuse et devra être appliquée au domaine innovant de la chimie verte.
Électrolytes solides hybrides pour batteries "tout solide" : Formulation et caractérisation multi-échelle du transport ionique

SL-DRF-24-0634

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Saïd Yagoubi

Thibault CHARPENTIER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Saïd Yagoubi
CEA - DRF/IRAMIS/NIMBE/LEEL

+ 33 1 69 08 42 24

Directeur de thèse :

Thibault CHARPENTIER
CEA - DRF/IRAMIS/NIMBE/LSDRM

33 1 69 08 23 56

Page perso : http://iramis.cea.fr/Pisp/said.yagoubi/

Labo : http://iramis.cea.fr/nimbe/leel/

Voir aussi : http://iramis.cea.fr/nimbe/lsdrm/

Les batteries lithium-ion, largement présentes dans notre vie quotidienne, ont révolutionné les applications portables et sont maintenant utilisées dans les véhicules électriques. Le développement de nouvelles générations de batteries pour les futures applications dans le transport et le stockage d'électricité à partir de sources renouvelables est donc vital pour atténuer le réchauffement climatique.
La technologie lithium-ion est généralement considérée comme la solution privilégiée pour les applications nécessitant une haute densité d’énergie, alors que la technologie sodium-ion est particulièrement intéressante pour des applications qui requièrent de la puissance. Néanmoins, l’instabilité intrinsèque des électrolytes liquides entraîne des problèmes de sécurité.

Face aux exigences de respect de l’environnement et de sécurité, les batteries tout solide à base d’électrolytes solides peuvent apporter une solution efficace tout en répondant aux besoins accus de stockage d’énergie. Les verrous à lever pour permettre le développement de la technologie batterie "tout solide" résident essentiellement dans la recherche de nouveaux électrolytes solides chimiquement stables et ayant de bonnes performances électriques, électrochimiques et mécaniques. Dans cet objectif, ce projet de thèse vise à développer des électrolytes solides composites « polymère/polymère » et « polymère/céramique » ayant une performance élevée et une sécurité renforcée. Des caractérisations par spectroscopie d’impédance électrochimique (EIS) seront réalisées afin de comprendre la dynamique cationique (par Li+ ou Na+) à l’échelle macroscopique dans les électrolytes composites, tandis que la dynamique locale sera sondée à l'aide de techniques avancées de RMN à l'état solide (relaxation du 23Na/7Li, RMN 2D, RMN in-situ & operando). D’autres techniques de caractérisation comme la Diffraction des rayons X et des neutrons, l’XPS, la chronoampérométrie, le GITT…seront mises en œuvre pour une parfaite compréhension de la structure des électrolytes ainsi que des mécanismes de vieillissement aux interfaces électrolyte/électrolyte et électrolyte/électrode de la batterie tout solide.

Mots clés : électrolyte solide composite, batterie tout solide, interfaces, caractérisation multi-échelle, dynamique des ions Li+ et Na+, performance électrochimique, RMN du solide, diffraction RX/neutrons.
nanoréacteurs tubulaires durables à polarisation radiale pour la catalyse

SL-DRF-24-0284

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Pierre PICOT

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Pierre PICOT
CEA - DRF/IRAMIS/NIMBE/LIONS/


Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=ppicot

Labo : https://iramis.cea.fr/NIMBE/LIONS/

Les exigences combinées liées à l'augmentation de la production d'énergie et à la nécessité de réduire les combustibles fossiles pour limiter le réchauffement de la planète ont ouvert la voie à un besoin urgent pour des technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifique et accessibles élevées, environnements confinés, meilleure séparation des charges). L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Bien qu'elle ne soit pas directement photoactive dans le domaine de la lumière visible (bande interdite élevée), elle présente une polarisation permanente de sa paroi en raison de sa courbure intrinsèque. Cette propriété fait d'elle un co-photocatalyseur potentiellement utile pour la séparation des charges. De plus, ce nanotube appartient à une famille partageant la même structure locale avec différentes morphologies courbées (nanosphère et nanotuile). En outre, plusieurs modifications de ces matériaux sont possibles (dopage de la paroi avec des métaux, couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet d'ajuster la bande interdite. Pour l'instant, la preuve de concept (c'est-à-dire le nanoréacteur pour des réactions photocatalytiques) n'a été obtenue que pour la forme nanotube.

L'objectif de cette thèse est ainsi d'étudier toute la famille (nanotube, nanosphère et nanotuile, avec diverses fonctionnalisations) en tant que nanoréacteurs pour des réactions de réduction du proton et du CO2 déclenchées sous irradiation.
Effet de la substitution sur les propriétés ferroélectriques et photocatalytiques de nanoparticules de titanate de barium

SL-DRF-24-0401

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=leconte

Labo : https://iramis.cea.fr/nimbe/leel/

Dans le cadre de la transition énergétique, la production d’hydrogène à partir de l’énergie solaire apparait comme un moyen de stockage puis de production d’énergie extrêmement prometteur. La photoélectrolyse de l’eau, pour se développer à grande échelle, a besoin de matériaux à haut rendement catalytique. Parmi les candidats envisagés, les matériaux dérivés des titanates de barium apparaissent prometteurs car leurs propriétés ferro- et piezoélectriques pourraient augmenter leur effet photocatalytique. Nous proposons donc dans ce sujet, mené en collaboration entre le LEEL du CEA et le SPMS de Centrale – Supelec, de synthétiser des nanoparticules de BaTiO3 par spray pyrolyse en flamme en opérant des substitutions sur Ba et O afin d’étudier l’effet de ces modifications sur les propriétés ferroélectriques du matériau. L’ajout d’inclusions de métaux nobles en surface des particules, susceptibles d’améliorer la catalyse, sera également réalisée lors de la synthèse de ces dernières. Enfin, des tests de photocatalyse et de piezocatalyse permettront d’établir les liens entre les phénomènes ferroélectriques et catalytiques dans cette famille de matériaux.
Exploration de la réactivité de catalyseurs à base d’oxyde par radiolyse

SL-DRF-24-0239

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Nathalie HERLIN

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Nathalie HERLIN
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169083684

Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Pisp/sophie.le-caer/

Labo : https://iramis.cea.fr/nimbe/LIONS

Voir aussi : https://iramis.cea.fr/nimbe/LEDNA

Dans le contexte de la recherche de procédés moins polluants et plus économes en énergie que les procédés actuels, il est intéressant de produire des molécules à fort enjeu telles que par exemple C2H4 en développant des voies de synthèses alternatives au vapocraquage, majoritairement employé, mais coûteux en énergie et à base de ressources fossiles. Les procédés tels que la photocatalyse, qui repose sur l’utilisation de l’énergie lumineuse, paraissent alors séduisants pour générer ces molécules d’intérêt. Dans ce cadre, nous avons déjà montré que l’utilisation de photocatalyseurs à base de TiO2 décoré par des particules de cuivre permettait la production d’éthylène à partir d’une solution aqueuse d’acide propionique, le tout avec une sélectivité (C2H4/autres produits carbonés) allant jusqu’à 85%.

Cependant, les cinétiques de photocatalyse peuvent être lentes et il peut être long d’identifier les meilleurs catalyseurs ou les meilleurs couples « catalyseurs/réactifs » pour une réaction donnée. Ainsi, dans le but de déterminer si la radiolyse, qui repose sur l’utilisation du rayonnement pour ioniser la matière, peut être une méthode efficace de criblage de catalyseurs, des premières expériences ont déjà été réalisées sur les couples catalyseurs (TiO2 ou CuTiO2)/réactifs (acide propionique plus ou moins concentré), préalablement étudiés en photocatalyse. Les premiers résultats obtenus par radiolyse sont encourageants. Dans ces expériences, seule la production de dihydrogène a été mesurée. Une différence significative a été observée dans cette production selon les systèmes : elle est importante lors de la radiolyse d’acide propionique avec des nanoparticules de TiO2, et sensiblement plus faible en présence des nanoparticules CuTiO2, ce qui suggère un chemin réactionnel différent dans ce dernier cas, en accord avec les observations réalisées lors des expériences de photocatalyse.

Le but de ce travail de thèse consistera à approfondir ces premiers résultats en synthétisant des nanoparticules (catalyseurs), en préparant des mélanges réactifs/catalyseurs puis en les irradiant et en mesurant les différents gaz produits par micro-chromatographie en phase gazeuse, en se concentrant d’abord sur l’éthylène. Un soin particulier sera accordé à la détermination d’espèces formées, notamment transitoires, afin de proposer in fine des mécanismes de réaction rendant compte des différences observées pour les différents couples réactifs/catalyseurs. Des comparaisons avec des résultats obtenus par photocatalyse seront également effectuées.
La terre crue, un matériau millénaire aux nouvelles utilisations émergentes

SL-DRF-24-0360

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Jean-Philippe RENAULT

Diane REBISCOUL

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Directeur de thèse :

Diane REBISCOUL
CEA - DES/ICSM (DES)//L2ME

0033 4 66 33 93 30

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

Voir aussi : https://www.icsm.fr/index.php?pagendx=3898

Les matériaux en terre crue, qui ont trouvé de multiples utilisations depuis des millénaires, offrent aujourd'hui un potentiel considérable en matière d'adaptation au changement climatique, grâce à leurs capacités naturelles de régulation thermique et hydrique ainsi que leurs production et façonnement à faibles émissions de CO2. Toutefois, des avancées scientifiques restent nécessaires pour une compréhension plus fine de ces matériaux, à l'échelle nanométrique.

Cette thèse se concentre sur le lien entre les propriétés mécaniques des matériaux en terre crue et leur nanostructure en mettant l’accent sur les rôles de l'eau confinée, des ions et des substances organiques. Deux approches, basées sur l’expertise sur les milieux nanoporeux développée au CEA, à Saclay et à Marcoule, seront suivies : l'analyse de matériaux anciens par des méthodes de spectroscopie et de diffusion de rayonnement ainsi que la mise au point d'un protocole de criblage permettant d’identifier les paramètres physicochimiques importants pour la durabilité. Ces recherches, qui visent à terme à optimiser les formulations de matériaux en terre crue, seront menées en collaboration avec des architectes spécialistes du domaine.
Métamatériaux multiéchelles à base de composites polymères biosourcés 3D-imprimés

SL-DRF-24-0326

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Valérie GEERTSEN

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Directeur de thèse :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Page perso : https://iramis.cea.fr/Pisp/valerie.geertsen/

Labo : https://iramis.cea.fr/nimbe/lions/

La réduction de la densité des matériaux est une des voies privilégiées pour réduire notre empreinte énergétique. Une des solutions consiste à remplacer les matériaux massifs par des microtreillis. Parmi ceux-ci, les structures d’architecture aléatoire inspirées de la structure osseuse possèdent les meilleurs atouts avec un comportement mécanique isotrope et une tenue mécanique accrues tout en répondant aux enjeux de l’économie circulaire et à l'adaptation au changement climatique. Peu consommateurs de matière, ces métamatériaux sont fabriqués par impression 3D et peuvent être compactés en fin de vie. Parmi toutes les technologies de fabrication, l’impression par polymérisation UV de résine liquide organique ou de composite est la plus prometteuse. Elle permet d’obtenir des matériaux résistants mécaniquement, sans générer de déchet de fabrication. Il est en outre possible d’y inclure de forte quantité de charge biosourcées réduisant encore leur impact environnemental.

La thèse proposée ici consiste à mettre au point l’impression de structures en microtreillis composites, depuis la formulation de la résine composite jusqu’à l’étude des propriétés mécaniques (viscoélasticité, limite élastique et résistance à la rupture) en passant par l’étape d’impression et de post-traitement. D’un point de vue plus fondamental, il s’agira d’étudier le lien entre la composition, la forme et les propriétés de surface des charges d’une part, et les propriétés d’imprimabilité de la résine et la réponse mécanique du métamatériau résultant d’autre part. La thèse se focalisera sur l’étude de charge de type cellulose sous forme de nanoparticule, microparticule ou fibre.
Par cette étude multidisciplinaire allant de la molécule chimique à la physique statistique, il s’agira de faire le lien entre la science et la technologie et créer les données de base à un jumeau numérique. Ceci permettra de mieux appréhender l’ensemble des processus et fournira des données de base sur les propriétés d’élasticité et résistance à la rupture qui serviront de socle à la modélisation numérique pour la génération accélérée de nouveaux matériaux.
Synthèse de nanoparticules de diamant à façon pour la production d’hydrogène par photocatalyse

SL-DRF-24-0432

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Jean-Charles ARNAULT

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

Nos résultats récents montrent que le nanodiamant peut agir comme un photocatalyseur, permettant la production d’hydrogène sous illumination solaire [1]. Malgré sa large bande interdite, sa structure de bande est adaptable selon sa nature et sa chimie de surface [2]. De plus, l’incorporation contrôlée de dopants ou de carbone sp2 conduit à générer des états supplémentaires dans la bande interdite qui augmentent l’absorption de la lumière visible comme le montre une étude récente associant notre groupe [3]. Les performances photocatalytiques des nanodiamants sont très dépendantes de leur taille, de leur forme et de leur concentration en impuretés chimiques. Il donc est essentiel de mettre au point une méthode de synthèse de nanodiamants "à façon" dans laquelle ces différents paramètres pourraient être finement contrôlés, afin de disposer d’une filière de nanodiamants "contrôlés" qui fait actuellement défaut.

Ce sujet de thèse vise à développer la synthèse de nanodiamants par une approche bottom-up utilisant un template sacrificiel (billes ou fibres de silice) sur lequel des germes de diamant < 10 nm seront fixés par interaction électrostatique. La croissance des nanoparticules de diamant à partir de ces germes sera réalisée en exposant ces objets à un plasma de croissance de dépôt chimique en phase vapeur activé par micro-ondes (MPCVD), ce qui permettra de contrôler très finement (i) l’incorporation d’impuretés dans le matériau (ii) sa qualité cristalline (rapport sp2/sp3) (iii) sa taille. Ce dispositif de croissance, qui existe au CEA NIMBE, est utilisé pour la synthèse de cœur-coquilles de diamant dopé au bore [4]. Dans la seconde partie de la thèse, un procédé innovant (demande de brevet en cours) sera mis en œuvre pour réaliser la croissance MPCVD des nanoparticules de diamant en faisant circuler les templates sacrificiels dans un flux gazeux. Au cours de cette thèse, plusieurs types de nanodiamants seront synthétisés : des nanoparticules intrinsèques (sans dopage intentionnel) et des nanoparticules dopées au bore ou à l’azote.

Après croissance, les nanoparticules seront collectées après dissolution du template. Leur structure cristalline, leur morphologie et leur chimie de surface seront étudiées au CEA NIMBE. Une analyse fine de la structure cristallographique et des défauts structuraux sera réalisée par microscopie électronique en transmission à haute résolution.

Les nanodiamants seront ensuite modifiés en surface pour leur conférer une stabilité colloïdale dans l’eau. Leurs performances photocatalytiques pour la production d’hydrogène seront mesurées en collaboration avec l’ICPEES de Strasbourg.

Références
[1] Patent, Procédé de production de dihydrogène utilisant des nanodiamants comme photocatalyseurs, CEA/CNRS, N° FR/40698, juillet 2022.
[2] Miliaieva et al., Nanoscale Adv. 2023.
[3] Buchner et al., Nanoscale (2022)
[4] Henni et al., Diam. Relat. mater. (under review)
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma

SL-DRF-24-0388

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc BRIANT

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mbriant

Labo : https://iramis.cea.fr/nimbe/ledna/

L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur stœchiométrie.

Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de structure complexe), d'identifier et de quantifier automatiquement les éléments présents.

En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la densité de nanoparticules, la distribution de taille ou de forme.
Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme

SL-DRF-24-0402

Domaine de recherche : Simulation numérique
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=leconte

Labo : https://iramis.cea.fr/nimbe/leel/

Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.
Analyse in situ par spectroscopie RMN MAS de batteries Li-ion

SL-DRF-24-0325

Domaine de recherche : Stockage électrochimique d’énergie dont les batteries pour la transition énergétique
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Magali GAUTHIER

Alan WONG

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Magali GAUTHIER
CEA - DRF/IRAMIS/NIMBE/LEEL

01 69 08 45 30

Directeur de thèse :

Alan WONG
CNRS - DRF/IRAMIS/NIMBE/LSDRM


Page perso : https://iramis.cea.fr/nimbe/Pisp/magali.gauthier/

Labo : https://iramis.cea.fr/nimbe/LEEL/

La résonance magnétique nucléaire à l'état solide (ssNMR) in situ est un outil de caractérisation précieux pour comprendre les réactions électrochimiques lors du fonctionnement d'une batterie. Cependant, les larges signaux obtenus en condition statique empêchent souvent d'exploiter totalement le potentiel de la caractérisation par RMN. Des expériences ssNMR ex situ, utilisant la rotation d'échantillon à angle magique (MAS), sont souvent nécessaires pour interpréter les données in situ. Comme pour toutes les caractérisations ex situ, les analyses ne représentent pas toujours fidèlement les processus électrochimiques en raison d'artefacts indésirables provenant du démontage de la cellule et de la séparation des électrodes. Par conséquent, le développement de la RMN in situ a été limité. Dans cette thèse l’étudiant s'attaquera à cette limitation en développant une cellule électrochimique RMN in situ permettant l'acquisition de données ssNMR à haute résolution avec la technique MAS, et permettant également une nouvelle méthode de spectroscopie ssNMR résolue dans l'espace. La combinaison de mesures in situ, de la technique MAS et de la spectroscopie localisée permettra de disposer d'un outil RMN unique pour approfondir les connaissances fondamentales de la chimie des batteries. Le doctorant mettra en évidence les atouts de l’outil développé en étudiant des phénomènes tels que les interfaces et la formation de dendrites dans des batteries Li-ion en fonctionnement.
Développement de lits granulaires denses et fluidisés dans des canaux microfluidiques pour des applications dans la santé

SL-DRF-24-0399

Domaine de recherche : Technologies pour la santé et l’environnement, dispositifs médicaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Florent Malloggi

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Florent Malloggi
CEA - DSM/IRAMIS/NIMBE/LIONS

+3316908 6328

Directeur de thèse :

Florent Malloggi
CEA - DSM/IRAMIS/NIMBE/LIONS

+3316908 6328

Page perso : https://iramis.cea.fr/nimbe/Pisp/florent.malloggi/

Labo : https://iramis.cea.fr/en/Pisp/lions/

Le problème de santé publique majeure qu'est la septicémie nécessite des technologies en rupture pour poser un diagnostic ultra-rapide. Les lits granulaires denses et fluidisés sont des systèmes idéaux pour les processus d'échange liquide-solide ou gaz/solide. Ils sont largement utilisés dans l'industrie en raison de leur rapport surface/volume élevé. Au cours de cette dernière décennie, la microfluidique associée aux laboratoires sur puce a permis de faire de nombreuse avancées notamment dans le cas de la préparation d'échantillon biologique. Nous proposons de développer une plateforme microfluidique polyvente qui permettra de créer de tels lits denses et fluidisés. Nous travaillerons dans un premier temps sur l’incorporation de membranes dans les microcanaux en nous appuyant sur le savoir-faire breveté et développé au laboratoire. Ensuite nous étudierons et caractériserons les lits granulaires pour finalement les tester sur la détection de bactéries dans des échantillons biologiques. Ce travail se fera en collaboration avec nos partenaires physiciens du LEDNA et biologistes du LERI du CEA Saclay.

 

 

Retour en haut