

The role of ablation mechanisms in the onset of

ns-laser induced plasma formation

D. Autrique¹, G. Clair², D. L'Hermite³, V. Alexiades⁴ and B. Rethfeld¹

- ¹ TU Kaiserslautern, Germany
- ² CEA DAM DIF, France
- ³ CEA DEN SEARS LANIE, France
- ⁴ University of Tennessee, USA

Workshop Palaiseau, December 10, 2012

Outline

- 1. Motivation: "LA-ICP-MS"
- 2. Case: Pulsed ns-laser ablation of copper in argon
- 3. Model
- 4. Results
 - Target: Mass removal
 - Breakdown: "0D" Collisional Radiative Model
 - Plume: 1D Partial LTE Model
- 5. Experiment
- 6. Conclusion

- "LA-ICP-MS":
- Laser Ablation Inductively Coupled Plasma Mass Spectrometry
- Determination trace-elements (Parts Per Billion)

Case Pulsed ns-laser ablation of Cu in Ar

What?

- 6 ns-laser pulse
- λ **= 532 nm**
- $F = 1-10 J/cm^2$
- Cu target
- 1 atm Ar

Why?

How does laser energy distribute between target and plume?

How?

- 1. Model laser- material interaction
- 2. Compare with measured transmission profiles
- 3. Compare with measured crater depths

Coupled story: target ↔ plume

- 1. Ablation mechanisms
- 2. Target properties
- 3. Plasma formation
- 4. Plume expansion

Target Modelling approach

2 models:

Full model

"Evaporation-only" model

evaporation / condensation volumetric mass removal transparency front ^[1] evaporation/condensation

Target Phase diagram copper^[2]

Phase diagram Evolution target surface cell

Target

Target

Collisional radiative model

Results

Model

Plume Temperature and Velocity

- 1. Experimental setup
- 2. Temporal intensities
- 3. Transmission study
- 4. Ablation depth measurements

Experimental setup

Transmission

Ablation depth

Experiment

Temporal intensity patterns^[4]

Transmission and ablation depth^[4]

[4] experimental data dissertation G.Clair, Université. D'Aix-Marseille II – CEA, 2011

Experiment

Study of ns pulsed laser ablation of copper

- ★ Tightly coupled processes: target → plume
 - Surface and volumetric mass removal
 - Volumetric ablation dominates ____ plasma formation
 - Initial expansion collisional radiative model
 - Onset breakdown through 1, 2 and 3 Photon Ionization
 - Laser pulse ends → partial LTE reasonable

Study of ns pulsed laser ablation of copper

- ★ Tightly coupled processes: target → plume
 - Surface and volumetric mass removal
 - Volumetric ablation dominates ____ plasma formation
 - Initial expansion collisional radiative model
 - Onset breakdown through 1,2,3 Photon Ionization
 - Laser pulse ends → partial LTE reasonable

