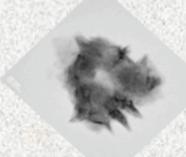
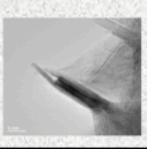


Electronic and Catalytic properties of MoS₂ Nanoplatelets: An ab initio study

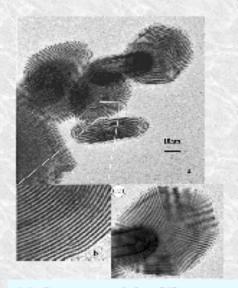
X. López-Lozano¹, S. Botti^{1, 2}, M. A. L.Marques³, M. Jose Yacaman³, A. Rubio⁴


- 1. Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, F-91128 Palaiseau, France.
- 2. European Theoretical Spectroscopy Facility (ETSF)
- 3. LPMCN, Université Lyon 1, CNRS, Villeurbanne, France
- 4. Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, USA.
- 5. Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco, Unidad de Física de Materiales Centro Mixto CSIC-UPV/EHU, and Donostia International Physics Center (DIPC), Apdo. 1072, 20018 San Sebastian, Spain.


Abstract

Catalysts based on MoS₂ are the most commonly used layered transition-metals-sulfides catalysts in petroleum refining. The study of the local active sites of these systems are of fundamental interest to understand and enhance their catalytic activity. MoS₂ nanostructures consisting on single/double-layer-structure are under experimental study because of their potential applications as nanocatalysts [1]. In this work we have performed *ab initio* density functional theory calculations using the ABINIT code [2] to determine the structural, electronic and catalytically active sites of MoS₂ Nanoplatelets. The calculated total energy of the optimized atomic structures reveals that the double-sheet models is more stable than the single-sheet model. The electronic band structures show the existence one-dimensional metallic states located at the nanoplatelet edges. Our results provide theoretical support to employ such nanostructures as a novel nanocatalyst.



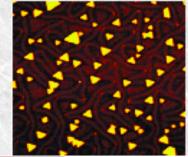


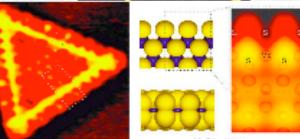
20 02

(a)Low-resolution TEM and (b) HREM images of MoS₂ Nanotubes [3]


MoS₂ nanoparticles [5]

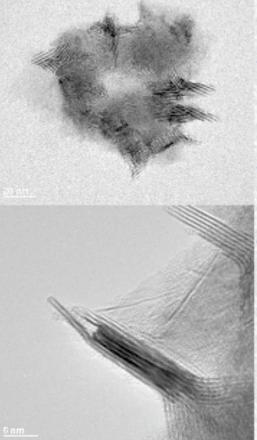
Motivation


Why MoS₂?

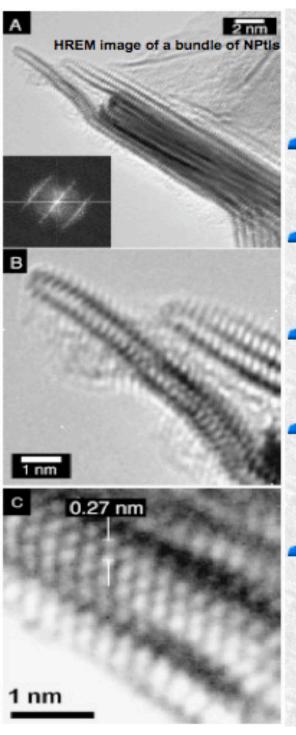

A remarkable material!

- The ability to form nanotubes. Like graphene, a single layer of MoS₂ can be warped into nanotubes.
- Can work as a catalyst. Catalysts based on MoS₂ particles are used on carbon-upgrading reactions like hydrodesulfurization (HDS).
- It Is an effective solid lubricant. MoS₂ fullerenelike particles have very low friction. Potential applications in space technology and ultrahigh-vacuum.
- Can generate one-dimensional (1D) conducting-electron states.
 Triangular single-layer MoS₂ nanocrystals/nanoclusters.

Armchair (8,8) (left) and zigzag (14,0) MoS₂ nanotubes. Light atoms are S, dark Mo.[4]

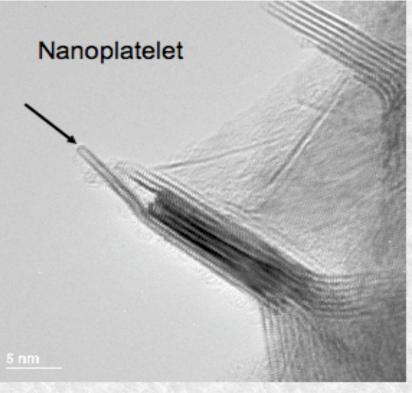

STM images of triangular MoS₂ nanoclusters on Au(111) [6]

MoS₂ Nanoplatelets


Nanostructures of MoS2 are of great interest for experimetalists

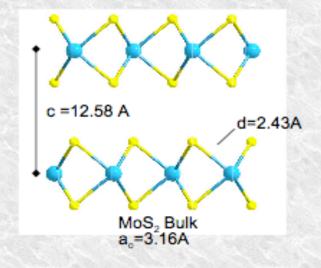
- Motivated by the need to develop better fuels and, as a consequence, better HDS catalysts, experimentalists synthesize nanostructures to study their catalytic properties.
- Single-layer transition metals like MoS₂ are of particular interest because their peculiar properties at nanometric size.
- Recently, pseudo-1D-structures of MoS₂ were proposed as potential nanocatalysts, they were named nanoplatelets [1].
- MoS₂ nanoplatelets (NPtls) are composed of a solid MoO₂ core with MoS₂ crystallites nucleating on its surface.
- Most of the NPtls are 14 to 30 nm long and are about one MoS₂ unit cell.
- These pictures show different HREM (High-Resolution Electron Microscopy) images at different scales of the NPtls.

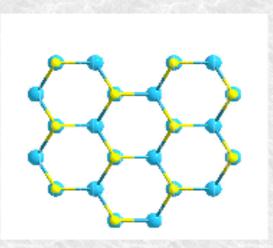
Core rode is MoO₂

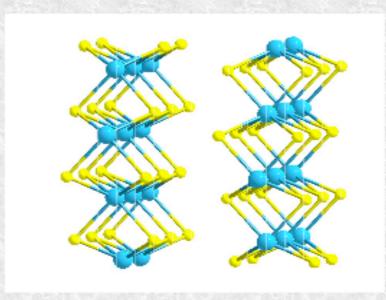


HREM images were provided by J. Yacaman from the Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, USA.

A closer look to MoS₂ NPtls

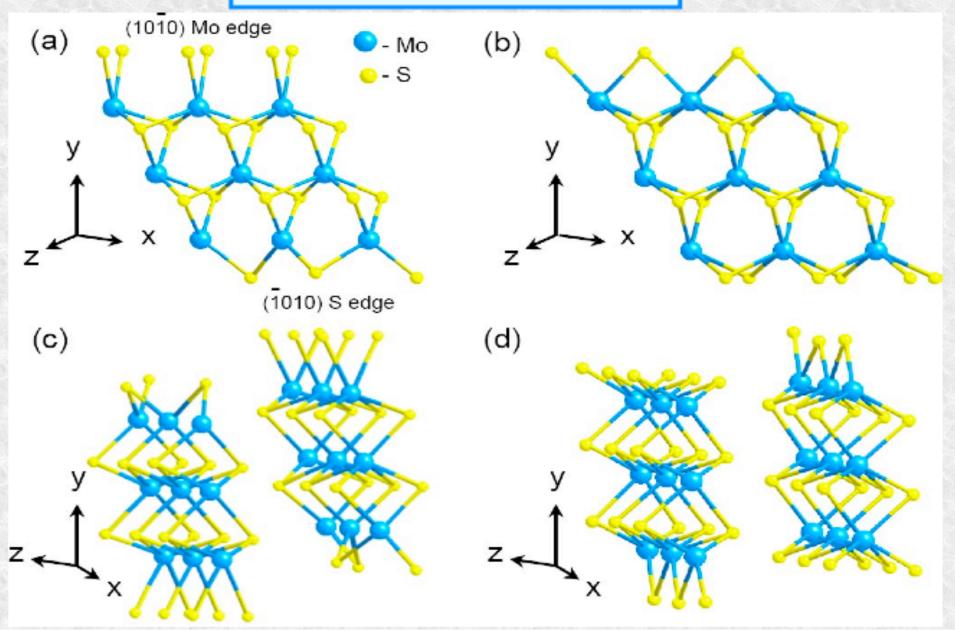

- NPtls look like needles that grow well off the core surface and can be seen as single entities (A), a NPtl.
- NPtls can be also regarded as nanowires with a thickness of a half of the regular MoS₂-2H unit cell (B).
- A resolved HREM image of a NPtls shows that the atoms are configured in an hexagonal array (C), similar to the bulk.
- In analogy with MoS₂ triangular clusters, NPtls might be used as new nanocatalyst due to the properties of their edge states (like metallic brim-sites) [1].
- Preliminar results of the electronic structure suggested a metallic behavior [1]. However, a complete and detailed theoretical study was still missing.




Modeling MoS₂ nanoplatelets

- Bulk MoS₂ is a layered material and a single layer consist of a S-Mo-S sandwich.
- In each layer the Mo atoms are arranged in an hexagonal lattice.
- Each Mo atom is six-fold coordinated by S atoms.
- A single layer can be terminated by two different low-Miller index edges:

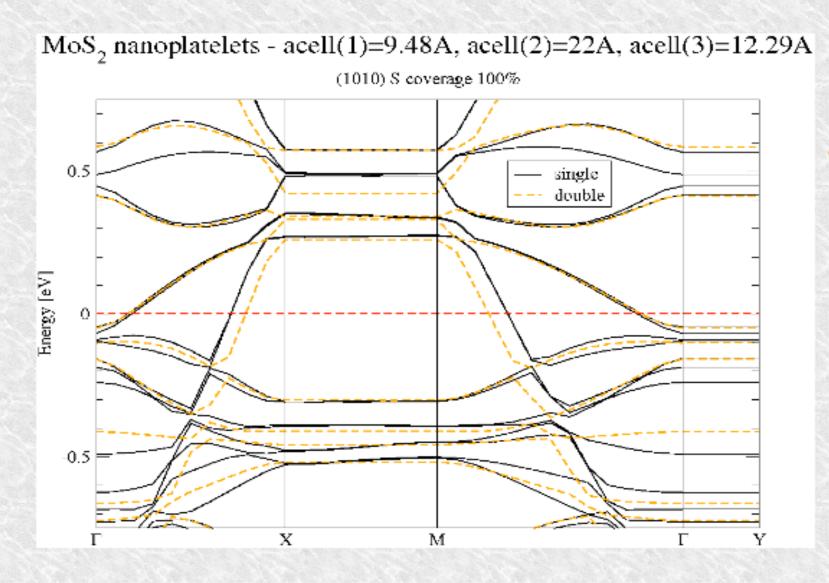
the sulfur-terminated (1010) edge (S edge) the molybdenum-terminated (1010) edge (Mo edge)



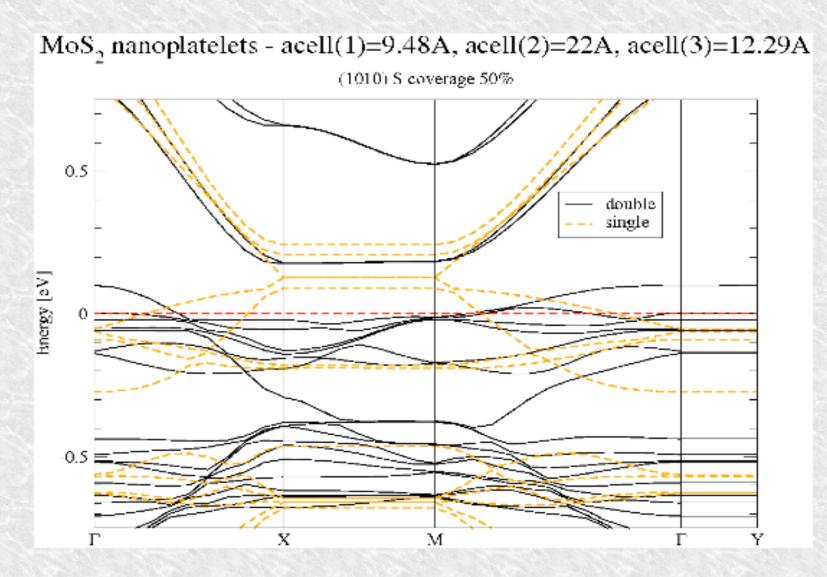
Modeling MoS₂ nanoplatelets

Calculational Method

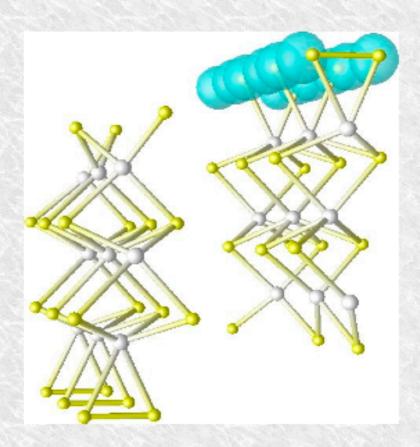
- The ab initio calculations are performed within density functional theory (DFT) using the code ABINIT [2].
- We use norm-conserving Troullier-Martin pseudopotentials and the generalized gradient approximation (GGA) from Perdew-Burke-Ernzerhof to describe the exchange and correlation potential.
- A Monhorst-Pack type mesh (4 k points) is used to sample the Brillouin zone, and a cut off energy of E_{cut} = 20 Ha is set for the plane waves.
- To model the NptIs we employ a supercell. The supercell consists of two S-Mo-S trilayers. Each S-Mo-S sandwich consists of three rows of MoS₆ stacked in the y direction. The neighboring units are separated by a vacuum layer of 12 A. Two different sulfur coverages are taken into account.
- A supercell consisting of 60 atoms (18-Mo,42-S) for 50% sulfur-coverage and one of 66 atoms (18-Mo, 48-S) for 100% sulfur-coverage are used.
- In our calculations all the atomic positions are allowed to relax until the Hellmann-Feynman forces are less than 0.1 mH/bohr.


Supercells
The atomic model of MoS₂ NPtls

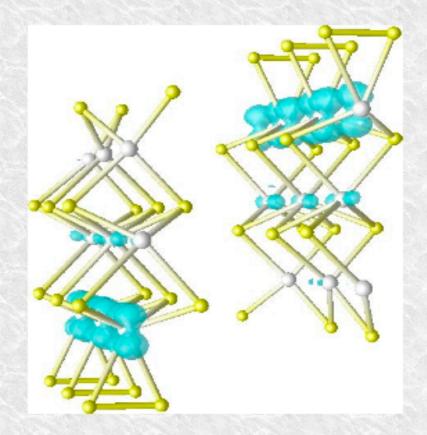
Comments and Objetives


- The transition-metal oxides and sulfides are two important classes of catalytically active materials. A lot of effort is employed on the synthesis of new nanostructured MoS₂- based materials like nanoclusters [6] and nanoplatelets[1].
- The chemical catalytic activity is often explained in terms of the geometric coordination of the surface-edge atoms.
- Low-coordinated point defects with a high affinity towards bond formation are the key ingredient of catalytic reactions (like sulfur vacancies).
- Anion vacancies play an important role on the catalytic activity of MoS₂-based catalysts used in HDS processes [6].
- Motivated by the new kind of chemical activity associated with fully sulfursaturated active sites on two-dimensional MoS₂ nanoclusters [7], we decided to investigate the electronic and catalytical properties of MoS₂ nanoplatelets.

Nanoplatelet band structure: 100% S-coverage

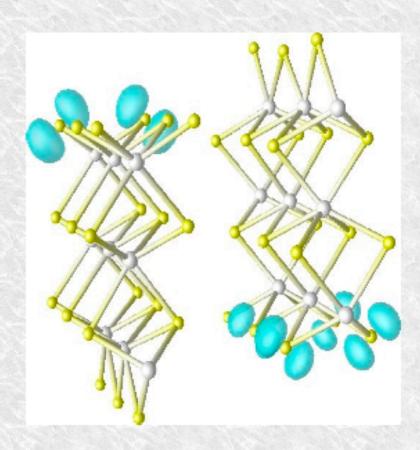

Comparison between single- and doublesheet geometries

Nanoplatelet band structure: 50% S-coverage

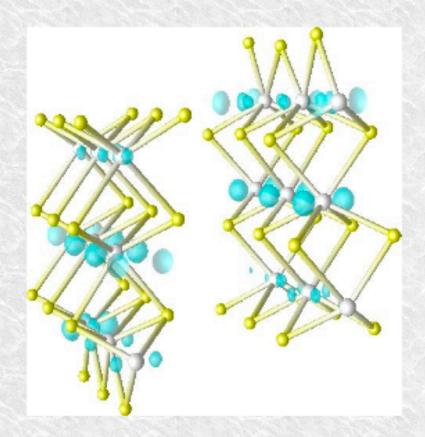


Comparison between single- and doublesheet geometries

Wavefunctions at E_F: 100% S-coverage



1D-metallic states localized at the sulfur dimers



Metallic surface-resonance states localized at Mo atoms

Wavefunctions at E_F: 50% S-coverage

1D-metallic states localized at the S-edge

Metallic surface-resonance states localized at Mo atoms

Results

- The search of catalytic active sites or coordinatively unsaturated sites are our initial objetives. We chose two different models with different sulfur saturation (100%-S and 50%-S) for both single and double-sheet MoS₂. In the case of double-sheets we explored the effect of different separation distances.
- In analogy with nanoclusters, we found localized low dimensional-metallic electron-states at the NPtl edges, which can be considered as the actives catalytic sites (brim sites [7]).
- Our results show clearly a metallic character for both sulfur coverages. Sulfur dimers (disulfide bonds) and monomers at bridge sites relax like in the case of the MoS2 (1010) edge-surface.
- The double-sheet structure also remains similar to the bulk, though the bond lengths decreased slightly (0.1A).
- Double-sheet nanoplatelets are always more stable than single-sheet counterparts.

References

- [1] G. A. Camacho-Bragado et al., J. Catal. 234 (2005) 182-190 and references in there.
- [2] http://www.abinit.org
- [3] M. Nath et al., Adv. Mat. 13, 283 (2001).
- [4] Gotthard Seifert et al., Physical Review Letters 85, 146 (2000).
- [5] Zak et al., J. Am Chem. Soc. 124, 4747 (2002).
- [6] Jeppe V. Lauritsen et al., Catalysis Today 111 (2006) 34-43.
- [7] Jeppe V. Lauritsen et al., Nature Nanotechnology 2, 53-58 (2007).
- [8] M. V. Bollinger et al., Phys. Rev. B 67, 085410 (2003).
- [9] X. Lopez-Lozano, S. Botti, M. A. L. Marques, M. J. Yacaman, and A. Rubio, in preparation (2008).