

Nanoparticles at interfaces

D. Carrière

A. Thill, D. Kopetzki, Y. Michina (LIONS)

P. Barboux (ENSCP)

Two non-miscible reactive phases

Confinement of the reaction
Control by the interface

Controlled growth of nanoparticles

Brust-Schiffrin « two phase » reaction

Brust1994

The context

Works fine with metals but:

- limited success with chalcogenides
- no success with oxydes (> 20 nm)

Control

Pan2004&2007 Abu Bakar2007, Vorobyova2004

Mechanism intellectually appealing but:

- film vs nanoparticle?
- contact angle vs "transfer agent"?
- shear?

Patil2000, Rao2005, Fan2007, Sanyal2008

Rautaray2003

Our systems

10 nm

Microemulsions (Separate reactive phases!)

‡ 100 μm

Dynamic interfaces by microfluidics

5 μm

Towards « smart » surfactant vesicles

Reactive microemulsions

Oil: 2-ethyl hexanoic acid very weak acid → hydrophobic

Organic metal precursor:

2-ethyl hexanoates → hydrophobic

Surfactant:

CTAC1

$$\bigcap_{N^{+}}$$
 Cl

Phase diagram

Stabilization mechanism

Cosurfactant: none!

"Catanionic" film at the oil/water interface

Effect of metal precursor

Metal precursor in oil phase: Contraction of the microemulsion

Effect of metal precursor

SAXS in W/O domain

Water-in-oil ~ 6 nm independent on Cu concentration

Reaction triggering (1)

$$Cu^{2+}(L^{-})_{2} + 2OH^{-} \longrightarrow CuO + 2L^{-} + H_{2}O$$

Reaction triggering (2)

70°C: reaction triggering

No structural change in the microemulsion upon reaction

ICPMS

Less low-Mw metal precursor Mn reactivity > Cu reactivity TEM: amorphous growth?

OH⁻ generated in situ by heating? Also works with NaCl addition: equilibrium M²+ ↔ Na⁺

Original growth triggering (temperature, salt addition)

Mechanism to be clarified:

- Time-resolved ESR
- SAXS

From amorphous to crystalline nanoparticles?

OK for materials, too complex for mechanism studies

→ simplification

Dynamic interfaces by microfluidics

Oil/Water dynamic interfaces

Time-resolved SAXS (Soleil, SWING)

NaOH 0.1 M: increase then decrease To be assigned to amorphous growth

NaOH 1 M: inhibition of the reaction at short times?

Mechanism

Cation reaction favorable at high NaOH Ligand release/reprotonation not favorable

Microfluidics powerful tool for time-resolved SAXS (µs vs ms)

Inhibition of the reaction at short times despite expected higher reactivity

Towards « smart » surfactant vesicles

Catanionic mixtures

Catanionic vesicles

Vesicles at the critical molar fraction Resistant to dialysis

Encapsulation of a pH-sensitive probe

pH measurement

pH gradient accross the vesicle membrane

Spontaneous uptake

Spontaneous uptake of cations
Transmembrane potential (from permeabilities) ~ -33 mV

Size dependence

$$Br = 0.74 \text{ mM}$$

$$Br = 1.80 \text{ mM}$$

$$C \alpha S/V = 1/R$$

Control of the uptake and pH by the size of the vesicles

First attempts

$$+ AgNO_3 \longrightarrow$$

Uptake of Ag⁺
Formation of [AgCl]
No vesicle destruction

More elaborate inorganic particles Control of diffusion rates by the size of vesicles

Sorting of the particle size by the vesicles

Three different soft-matter systems:

- microemulsions: original growth triggering
- microfluidics: mechanistic studies
- vesicles: selection of growth conditions

Acknowledgements

P. Barboux (ENSCP): SER

A. Thill (CEA, LIONS): SAXS

C. Mariet (CEA, LPS): ICPMS

Microemulsions

O. Taché, P. Haltebourg, C. Blot, J. Daillant, O. Spalla, A. Thill, Swing

SAXS at Soleil

D. Kopetzki, Y. Michina (CEA, LIONS)
T. Gustavsson (CEA, LFP)

Vesicles