CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact | Français

Sujet de stage / Master 2 Internship

Back to the internship list

Measurement of the excitation spectrum of an individual skyrmion

Contact: DE-LOUBENS Grégoire , , gregoire.deloubens@cea.fr, +33 1 69 08 71 60
Magnetic skyrmions are topological singularities of interest for information storage and processing. The goal of this internship will be to use a unique near field microscopy technique to study the dynamics of a single skyrmion stabilized in a magnetic nano-disk.
Possibility of continuation in PhD: Oui
Deadline for application:27/04/2018

Full description:
Magnetic skyrmions are topological singularities appearing in magnetic materials with strong Dzyaloshinskii-Moriya interaction (DMI), which favor non-colinear configurations of the magnetization. These topological objects are interesting candidates for information storage and processing, as they are naturally coupled to spintronics [1]. Nevertheless, their stability and dynamics still have to be investigated. Recently it has been demonstrated that such structures having typical size of a few tens of nanometers could be stabilized at room temperature in nanodisks patterned from multilayers with strong DMI [2]. Their excitation spectrum has also been calculated [3], but never measured. The goal of this internship is to use a magnetic resonance force microscope (MRFM) to study the dynamics of an individual skyrmion. This near field microscopy technique uses a magnetic probe attached at the end of a very soft mechanical cantilever to detect magnetic resonance in nanostructures [4].

This master thesis can be followed by a PhD thesis, in collaboration with the CNRS/Thales laboratory, in the frame of the ANR project TOPSKY.

[1] J. Sampaio, et al., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology 8, 839-844 (2013)
[2] C. Moreau-Luchaire, et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature nanotechnology 11, 444-448 (2016)
[3] J.-V. Kim, et al., Breathing modes of confined skyrmions in ultrathin magnetic dots, Phys. Rev. B 90, 064410 (2014)
[4] G. de Loubens, et al., Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk, Phys. Rev. Lett. 102, 177602 (2009)
Tutor of the internship


Retour en haut