CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact | Français

PhD subjects

3 sujets IRAMIS

Dernière mise à jour : 17-02-2019


««

• Soft matter and complex fluids

 

Biophysical and dynamical study of chromatin conformation during genome replication

SL-DRF-19-0435

Research field : Soft matter and complex fluids
Location :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie

Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire

Saclay

Contact :

Frédéric GOBEAUX

Patrick GUENOUN

Starting date : 01-10-2018

Contact :

Frédéric GOBEAUX

CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 24 74

Thesis supervisor :

Patrick GUENOUN

CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-74-33

Personal web page : http://iramis.cea.fr/Pisp/frederic.gobeaux/

Laboratory link : http://iramis.cea.fr/nimbe/lions/

The tridimensional organization of the genome and its dynamics in live cells are decisive to perform its functions. It is crucial to understand them and to identify the parameters controlling them. Current state of the art allows describing the short range (<10 nm) and long range (>250 nm) organization of chromatin conformation in the nucleus. However, there is an intermediate range (10-250 nm) where chromatin organization is difficult to apprehend. This range corresponds to the size of protein complexes that modify chromatin and harness genome replication.



We propose to monitor cell cultures during genome replication and other cellular events using small angle x-ray scattering. Thanks to a dedicated experimental set-up we will study chromatin conformation dynamics during genome duplication and complement this analysis with numerical simulations (molecular dynamics) so as to correlate chromatin dynamics with that of genome duplication. We will use different cell mutants and the addition of drugs to perturb the system and modify the observed structures.



This project is a collaboration between two teams of physicists and biologists and will consist for the student to reach a dual expertise in both disciplines.

Single-ion hybrid polymer electrolytes for Li-metal battery

SL-DRF-19-0554

Research field : Soft matter and complex fluids
Location :

Laboratoire Léon Brillouin

Groupe de Diffusion Neutron Petits Angles

Saclay

Contact :

Jacques JESTIN

Starting date : 01-10-2019

Contact :

Jacques JESTIN

CNRS - LLB01/Laboratoire de Diffusion Neutronique

0661476825

Thesis supervisor :

Jacques JESTIN

CNRS - LLB01/Laboratoire de Diffusion Neutronique

0661476825

Lithium metal polymer" Batteries: towards operation at ambient temperature

SL-DRF-19-0563

Research field : Soft matter and complex fluids
Location :

Laboratoire Léon Brillouin

Groupe Biologie et Systèmes Désordonnés

Saclay

Contact :

Jean-Marc ZANOTTI

Starting date : 01-10-2019

Contact :

Jean-Marc ZANOTTI

CEA - DRF/IRAMIS/LLB/GBSD

(+33)(0)4-76-20-75-82

Thesis supervisor :

Jean-Marc ZANOTTI

CEA - DRF/IRAMIS/LLB/GBSD

(+33)(0)4-76-20-75-82

Personal web page : http://iramis.cea.fr/Pisp/jean-marc.zanotti/

Laboratory link : http://www-llb.cea.fr/

More : http://liten.cea.fr/cea-tech/liten/Pages/Accueil.aspx

This PhD subject proposes an original way to allow the use of "lithium metal polymer" batteries at room temperature. This objective will be achieved by combining three effects:

i) The nanometric confinement of the electrolyte in membranes based on vertically aligned Carbon NanoTubes (VA-CNT),

ii) The use of low molecular weight polymer (here Poly(Ethylene Oxide (PEO))

iii) One-dimensional ionic conduction.



The conduction of the CNT confined Lithium will be driven by two characteristic distances: the pore diameter (1-4 nm) and the total VA-CNT length (from 10 to 500 micrometers). Rational modeling of the transport properties over distances differing by orders of magnitude naturally calls for a multiscale approach.

Therefore, as for its fundamental Science aspect, the primary goal is to develop an experimental multi-scale approach to bridge the broad time and spatial scales (eight orders of magnitude) relevant to the high-mobility-in-tight-1D-spaces we are seeking.

The applied research fold of the study is to prove the validity of the concept.

 

Retour en haut