| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | Français
Electrostatics in electrolytes expressed in an exact formalism reminiscent of the Poisson-Boltzmann picture
Roland Kjellander
Dept. of Chemistry and Molecular Biology, University of Gothenburg
Thu, Jun. 05th 2014, 11:00
SPEC Bât 466 p.111 (1er ét.), CEA-Saclay

In the PB approximation for electrolyte systems one assumes that the solvent behaves like a dielectric continuum and that the charge of each ion interacts with the average electrostatic potential from other ions in the system, neglecting the correlations. In reality an ion does not “feel” the mean potential since the ions and the solvent molecules in its neighborhood correlate with it—each ion has a local “ion and solvent cloud” of its own where the ion distribution deviate from the average one and where the locations and orientations of solvent molecules are affected. This cloud affects the interactions felt by the ion.

In this treatise it is shown how it is possible to include such effects in an exact manner for the screened electrostatic interactions. Thereby, the exact theory of electrolyte solutions with discrete solvent molecules is reformulated in a manner that has a similar structure as the PB approximation theory. The screened electrostatic interaction between any two particles in the system is then written in terms of the average electrostatic potential due to one of them interacting with an effective charge distribution of the other (rather than with the bare charges as assumed in the PB approximation). This effective charge distribution also has the role as the source of the average electrostatic potential when the latter is expressed in terms of the screened rather than the ordinary (unscreened) Coulomb potential. The resulting exact formalism maintains a large part of  the physical transparency of the PB theory.

The primary advantage is conceptual since the formalism separates out the screened electrostatics among complex consequences of the various interactions. Since the theory is exact, the task to obtain numerical results is the same as earlier. To do any numerical work one needs to do computer simulations or use some other approximate analytical or numerical method. One can take such results as input to analyze the behavior of electrolytes using the present formalism. The theory can also be used as a guide to invent new approximations.

Contact : David CARRIERE


Séminaire LIONS - Informations pratiques

Entrée sur le site du CEA de Saclay pour les séminaires LIONS


Afin de pouvoir entrer sur le site du CEA de Saclay veuillez adresser les données personnelles suivantes par courriel à David Carrière et Michèle COLIN (secrétariat) un avis d’entrée vous sera alors délivré :

Nom :
Prénom :

Date et lieu de naissance :
Nationalité :

Nom de l'employeur :

Ces informations doivent être envoyées au mieux deux jours avant la date du séminaire.

Lors de votre venue vous devez vous présenter avec une carte d'identité ou un passeport en cours de validité. L'entrée sur le site se fait par l'entrée principale ou porte Nord (suivre le lien ci-dessous), un badge vous y sera remis. Demandez à l'accueil le Bât.125 ils vous renseigneront. Les séminaires se déroulent en pièce 157 (1er étage). En cas de problème vous pouvez contacter le secrétariat au

 Formalities for entering the CEA Saclay site for LIONS seminars


To enter in CEA Saclay you need to send the following personal data to David Carrière and Michèle COLIN (secretariat):

Last Name :
First Name :

Place and date of birth :
Nationality :

Employer Name :

These informations must be preferably sent at least two days before the seminar date.

When you come you must have a valid ID card or passport with you.

The entrance in CEA Saclay is through the main entrance or north entrance (see link below), a pass will be delivered. Ask at the “accueil” the path for the building 125. LIONS seminars take place in room 157 (first floor).

Any questions/troubles do not hesitate to contact our secretariat:


Informations:  Access
Contact:  David Carrière

#26 - Last update : 10/10/2012


Retour en haut