| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | Français
Synthèse de nanoparticules cristallines en solution : rôle des états transitoires
Alexy de Jesus Almeida Freitas
Fri, Feb. 15th 2019, 14:00
Amphi. Bloch, Bât. 774, Orme des Merisiers, CEA-Saclay

Manuscrit de la thèse


Résumé :

La chimie douce est attrayante par sa simplicité de mise en œuvre. Cet attrait s’accompagne d’une mauvaise connaissance des phénomènes mis en jeu. Traditionnellement, les théories classiques de nucléation sont invoquées pour décrire la taille des cristaux et leur vitesse d’apparition `a partir des ions en solution. Elles n´négligent cependant par construction (i) tout état réactionnel intermédiaire (ii) toute considération de microstructure. Les vitesses mesurées ont au moins 1010 d’écart avec les prédictions actuelles. Prendre en compte les états intermédiaires et étudier l’impact de ceux-ci sur la structure (pas seulement la taille) devrait permettre de faire progresser la connaissance des phénomènes de cristallisation. Caractériser ces intermédiaires réactionnels reste un défi : ils sont labiles, de taille nanométrique, et se forment en moins d’une seconde. Pour aborder cette problématique, le vanadate d’yttrium dopé europium (YVO4:Eu) est un excellent candidat : il est microstructuré, et sa cristallisation - polycristalline ou monocristalline selon le pH – passe par un état intermédiaire amorphe.

Nos travaux précisent les différentes microstructures observées. Ensuite, nous mesurons trois vitesses de germination par diffusion X in situ, avec différents degrés de polycristallinité associés. Nous proposons un modèle simple permettant de prédire la poly/monocristallinité à partir des compétitions germination/ croissance cristalline et de l’idée, nouvelle, suivante : le précipité amorphe confine la réaction. En plus de ce rôle, il sert à la fois de réacteur (contient 80% des réactifs) et de moule (fixe la taille finale des particules). Tous les amorphes sont similaires, sa présence seule n’explique donc pas les différences de cinétiques structurales observées. Nous étudions donc ensuite les cinétiques chimiques mises en jeu. Nos mesures montrent que la cinétique de réaction chimique dépend principalement de la quantité d’ions hydroxyles engagés dans l’amorphe. Les méthodes et concepts que nous avons développés sont indépendants du système d’étude, et il est fortement probable que ceux-ci seront valides pour d’autres systèmes : nanoparticules d’oxydes ou cristaux en général.

Mots-clés : Nanoparticules cristallines, Etats transitoires, SAXS/WAXS, Etat amorphe.


Synthesis of crystalline nanoparticles in solution : role of the transient states

Soft chemistry is attractive thanks to its easy implementation. However, the related phenomena are poorly understood to this day. Usually, crystal size and their nucleation rate are described using classical nucleation theories. By construction, they neglect (i) any potential intermediate state (ii) any consideration of microstructure. In addition, the nucleation rates measured are in disagreement with the prediction, by a factor of at least 1010. Taking into account the intermediate states and investigate their impact on the structure (not only the size) should be a good way to improve crystallization theories. The characterization of those intermediate states remains challenging : they are labile, nanometer-sized, and are formed in less than a second. To address our problem, europium-doped yttrium vanadate (YVO4:Eu) is an excellent candidate : it is microstructured and its crystallization - polycrystalline or monocrystalline depending on the pH – occurs via an amorphous intermediate state.

Our work precises the different microstructures observed. We then measure three different nucleation rates in situ X-ray scattering, with different degrees of polycristallinity associated. We propose a simple model predicting the poly/monocrystallinity from the competition between nucleation and crystal growth and the following new idea : the amorphous precipitate confines the reaction. In addition to this role, it also serves as reactor (contains 80% of the reactants) and as template (as it sets the particles’ final size). All three amorphous are structurally similar, its structure alone cannot explain the differences in structural kinetics we observe. We thus focus on chemical processes in play. In particular, we demonstrate that the reaction kinetics depends mainly on the number of hydroxyl ions engaged in the amorphous network.

The methods and concepts developed here are independant on the chemical system used, and it is highly probable that they will prove valid for other compounds : other oxide nanoparticles, or crystals in general.

Keywords: Crystalline nanoparticles, Transient states, SAXS/WAXS, Amorphous state.

Contact : David CARRIERE

 

Retour en haut