| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
Synthèse et caractérisation des nano-objets / Synthesis and characterization of nano-objects
logo_tutelle 

Synthèse et caractérisation des nano-objets :  L’IRAMIS dispose de capacité de synthèse de nano-objets aussi bien par des techniques dites de salles blanches (MBE, lithographie, ablation laser,…) que par des techniques bottom-up de chimie (procédés en solution, pyrolyse laser ou CVD). Cette capacité de préparation de nano-objets s’accompagne de recherches originales dans l’art de les fonctionnaliser et de les mettre en œuvre pour obtenir des matériaux macroscopiques nanostruturés ou des objets fonctionnels.

Ces synthèses s’accompagnent de nombreux travaux de caractérisation fine des interactions entre atomes ou molécules, intervenant au cours de l'élaboration des nano-objets et des nanomatériaux ou liés à leurs propriétés.

Pour les applications recherchées, avec l'objectif de maitriser la conception de composants fonctionnels et bien caractérisés, cette connaissance permet d'orienter, par application de contraintes contrôlées, les associations entre les objets élémentaires pour obtenir une gamme de "nano-objets

Pour aboutir à la conception de composants fonctionnels et bien caractérisés, cette connaissance permet, par l'application de contraintes contrôlées, les associations entre les objets élémentaires pour obtenir toute une gamme de "nano-produits"  : molécules complexes, nanoparticules, nanotubes de carbone, graphène, structures micellaires ou colloïdales, composés auto-assemblés, solides nanostructurés, surfaces fonctionnalisées...

 

Synthesis and characterization of nano-objects:  IRAMIS has a capacity of synthesis of nano-objects by clean-rooms methods (MBE, lithography, laser ablation, ...) and by bottom-up chemical processes (solution processes, laser pyrolysis, CVD). This ability in nano-objects elaboration is accompanied by original research to functionalize them or implement them, to get nanostructured macroscopic materials or functional objects.

These synthesis are accompanied by numerous works of fine characterization of the interactions between atoms or molecules, involved in the development of nano-objects and nanomaterials or related to their properties.

For the required applications, with the objective of achieving the design of functional and well characterized components, this knowledge makes it possible to orient by application of controlled constraints, the associations between the elementary components, to obtain a range of "nano-objects" : complex molecules, nanoparticles, carbon nanotubes, graphene, micellar structures or colloidal, self-assembled compounds, solid nanostructured, or functionalized surfaces...

 
#106 - Last update : 07/30 2019
 

To get objects with original features, making molecular materials is addressed by assembling building blocks, as atoms, simple or complex molecules or nanostructures (carbon nanotubes, and graphene sheets in particular) on metallic, inorganic or organic supports, glass ... by "bottom-up" processes.

With the mastery of instruments to visualize and manipulate nano-objects, many production processes are implemented:

  • synthesis of nano-objects in gaseous phase (composite nanoparticles, carpet of carbon nanotubes , ...)
  • synthesis of nano-objects in in liquid phase (precious metal nanoparticles, sol-gel processes, ...)

On this theme, the strength of the IRAMIS teams is to involve research on the building processes, to those on knowledge of fundamental properties of nano-objects, assembly mechanisms, organization of the resulting structures and characterization of their properties.


Depending on the field (low-carbon energies, nanoscience for information and health technologies (fundamental research for IT and HIT), radiation-matter interaction), several IRAMIS teams are involved in this topic.

In nanosciences, the interfaces are places where the molecular or nanoparticle self-assembly is particularly original, as at the air-water interface (Langmuir films of peptides, specific ionic adsorption) or at the oil-water interface (emulsions stabilized by mineral nanoparticles or copolymers). Self-assembly results from an energy balance between volume terms and interfacial energies.

The teams (NIMBE/LIONS notably) also study the transfers through these interfaces (transfer kinetics of water-oil relevant for the treatment of waste) or kinetically  formed structures by interfaces assemblies (phase separations of block copolymers or concentrated solutions of polymers).

The new sources of energy transformation (thermoelectricity, photovoltaic) require also the best control of the transfer of (often charged) species to the interfaces.

Finally the mastery of processes for the development and assembly of microfluidic components, will find many applications, like drugs production, thermoelectricity, heat recovery, ...

Le développement des nanotechnologies s'appuie de plus en plus sur la logique d'assemblage spontané (auto-assemblage) ou non, des briques élémentaires que sont les nanoparticules. On souhaite ainsi mettre à profit les propriétés intrinsèques des nanoparticules comme leurs propriétés plasmoniques, leur grande surface spécifique ou encore leur réactivité et celles de leurs assemblages sous forme de matériaux, de membranes de nanofiltration ou encore de cristaux photoniques. Dans tous les cas une première étape consiste à maitriser la synthèse de ces objets en terme de quantité, de taille et de distribution. Ce contrôle ne peut pas être obtenu uniquement par des méthodes classiques d'essais-erreurs. Les laboratoires de l'IRAMIS développent ainsi une analyse mécanistique des processus de nucléation croissance de ces objets en couplant :

  1. ) des réacteurs de mélange controlés (microfluidique en phase liquide, pyrolYse laser en phase gaz)
  2. ) des chimies douces (température ambiante et majoritairement dans l'eau)
  3. ) des techniques d'analyse in situ (lumière, SAXS, WAXS, XAS, SANS...) et des analyses théoriques classiques et atomistiques, pour étudier le processus de synthèse avec les résolutions nécessaires (spatiale et temporelle)

Des études sur l'impact potentiel des nanoparticules sur l'environnement sont également conduites.

In very many situations, whether it be in fluids or materials for every day use, or in biological systems, matter is present in a highly dispersed form. It follows an extraordinary range of behaviour due to structural combinations, from the molecular to the mesoscopic and macroscopic scale. This field of research includes "soft matter", or the study of different forms of inorganic and organic objects on the mesoscopic scale, under thermal agitation, and interacting through dispersive or electrostatic forces.

The fundamental interest, the knowledge of the interaction energies between grains of the dispersed matter is closely linked to the industrial applications for powder, paste or emulsion transport and flow or creep properties of plastics with interesting mechanical behaviour. A related scientific domain concerns dry nanomaterials, in which the nanometric grain boudaries are closely linked. The mechanics of self-assembly and their application are the same for both liquids and solids : confinment, coupling and specific surface sensitive effects.

La plupart des synthèses chimiques sont réalisées en milieu liquide. Pour l'élaboration de nanoparticules et les nanomatériaux, de multiples méthodes de synthèse en phase gaz se révèlent particulièremetn utiles et performantes .

L'équipe LEDNA du NIMBE a ainsi plus particulièrement réalisé des développement originaux pour l'élaboration et la caractérisation de nano-objets en phase gaz :

 

 

Retour en haut