| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact

Electronic structure and atomistic modelisation

Several IRAMIS teams are involved in calculations of the electronic structure (ab-initio , tight binding, Hückel methods, etc...) and more generally in the modeling of matter at the atomic scale, which also includes more phenomenological methods (empirical potentials, model Hamiltonians, etc...) These modeling tools are mainly developed and used in physics (spectroscopy, transport, magnetism), chemistry (reactivity, dynamics) and for the study of materials (diffusion, growth, defects).

Electronic structure and atomistic modelisation
Energy conversion

Energy conversion

The development of new technologies for energy implies mastering the process of conversion between the different forms (solar, thermal, chemical, electrical, mechanical, etc.), as well as storage processes: Solar energy can be directly transformed into electrical energy via the photovoltaic process and stored in accumulators. It can also be transformed directly into chemical energy (hydrogen) by photocatalysis.

Nanomagnetism, spintronic and multiferroic materials

This research topic focuses on the development and study of: magnetic materials or multiferroic oxides (ferroelectricity associated with magnetism)* the magnetization dynamics in hybrid nanostructures and its coupling to the spin currents (spintronics) development of ultra-sensitive magnetic sensor and the associated modeling.

Nanomagnetism, spintronic and multiferroic materials
Nanophotonics, Plasmonics

Nanophotonics, Plasmonics

Photonics is the science and technology of the production of photons, their propagation and their absorption by matter. The photonic properties of condensed matter depends on the intrinsic properties of its constituents (molecules, crystalline lattice,...) but, as importantly, on their organization at the nanoscale.

Organic and molecular electronics

With organic and molecular electronics, a data processing based on various types of nano-objects (molecules, biomolecules, nanoparticles, carbon nanotubes, graphene,...) is emerging.

Organic and molecular electronics
Physics and life

Physics and life

Three research programs of the IRAMIS found an natural extension towards biology: Molecular engineering, where studies of co-operative interactions of molecules in solution found a direct extension towards studies of proteins and of the various assembly modes of biological interest molecules, Matter with high density of energy, where radiolysis, molecule radiation interactions, can be directly transposed to molecules like the ADN, Divided ultra matter, where nanostructured materials, nanophysics and biology converge.

Physique de la matière condensée, étude par l’interaction rayonnement matière / Condensed matter studies by radiation-matter interaction

Les grandes installations de l’IRAMIS, telles que les spectromètres de diffusion, de diffraction et les stations d’imagerie de neutrons du LLB ou l’accélérateur SIRIUS du LSI, sont particulièrement adaptées à l’étude des propriétés physiques de la matière condensée.

Physique de la matière condensée, étude par l’interaction rayonnement matière / Condensed matter studies by radiation-matter interaction

Statistical physics and complex systems

The understanding and control of the structure, texture, composition, kinetics of evolution of materials and thus of their physical chemical or mechanical properties are a major stake in wide fields. In much cases, the materials which one wishes to use for a given application are intrinsically evolutionary. Out of equilibrium dynamics may affect the mechanic, magnetic or electric properties of a number of materials.

Statistical physics and complex systems
Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy

L’IRAMIS développe des matériaux nanostructurés pour les dispositifs photovoltaïques (PV) organique ou hybride : nanoparticules de silicium dopées ou non incluses dans différentes matrices, molécules spécifiques aux couches d’interface de cellules PV organiques, nanotubes de carbone fonctionnalisés par des chromophores, nanoparticules d’oxydes TiO2 dopées ou non en azote pour les cellules solaires à colorant cellules PV à base de Perovskite.

 

Retour en haut