| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact

Materials and nanosciences, fundamental studies and applications

This scientific axis covers the activities related to the research in materials science and more generally in hetero-systems (i.e., interfaces, alloys, composites materials, and confined systems). The topics cover the study of the detailed st ructure of nanoobjects, the interactions between nano-objects, and the role of nanost ructures in composite materials. The techniques used for these studies range from diffraction to small angle scattering and reflectivity.

Materials and nanosciences, fundamental studies and applications
Nanostructured materials and nanocomposites

Nanostructured materials and nanocomposites

In very many situations, whether it be in fluids or materials for every day use, or in biological systems, matter is present in a highly dispersed form. It follows an extraordinary range of behaviour due to structural combinations, from the molecular to the mesoscopic and macroscopic scale.

Strongly correlated quantum materials and magnetism

This scientific axis encompasses research activities on a large variety of magnetic and/or strongly correlated electron systems. Included are studies of unconventional superconductors (cuprates, pnictides), geometrically frustrated pyrochlore magnets (spin ices), novel magnetic orders in 4f-electron systems (heavy fermions, Kondo insulators), multiferroic compounds with interplay between electric and magnetic orders, manganites with giant magnetoresistance properties, and molecular magnets.

Strongly correlated quantum materials and magnetism
Supramolecular, structural and coordination chemistry

Supramolecular, structural and coordination chemistry

In this domain, the field of study of DRECAM covers the molecule to the controlled assembly of molecules. This approach extends from the fine comprehension of molecule - metal coordination and interaction, to the construction and the synthesis of molecular assemblies having specific properties (structure, complexation, solubility, biological activity) and finally to their characterization by specific tools such as solid or liquid NMR, X-ray or neutron scattering and near field microscopies.

 

Retour en haut