| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
Magnetism, Frustration and Disorder

In "Magnetism, Frustration and Disorder" group, our research interests are centered around the physics of ‘Complex Matters’. Currently, our research activities focus on the glass transitions and associated out-of-equilibrium dynamics in frustrated magnetic systems and structural glasses. In both cases, the individual elements (magnetic moments, molecular configurations)  cannot simultaneously minimize their respective energies globally, therefore the system as a whole will continues to "age" indefinitely searching for its true ground state.


Frustrated magnetic systems can either be disordered as in spin- and superspin- glasses (magnetic nano-object assemblies) or ordered as in the Kagome lattices. In addition, we study low temperature magnetic properties in a variety of materials such as superconductors and carbon nanotubes.

Within the "magnetism" branch of our group, we are currently investigating the following topics:

  • The FDT (Fluctutation and Dissipation Theorem) Violation in the Superspin Glass state of Frozen Ferrofluids

  • The Dynamical Correlation Length Growth in Superspin Glass State and Anisotropy Effects
  • Emergence of Collective Magnetic State in Supercrystals of Co Nanoparticles
  • Direct observation of magnetization reversal in magnetic nano-pillars (soon)

Our present "team members"

New: PhD research opportunity (in French)


The experimental techniques used in our lab include:

  CRYOGENIC S600 SQUID magnetometer - DC and AC magnetization and susceptibility measurements in applied magnetic field up to 5.5 Tesla. contact ( or )
  Dilution Refridgerator SQUID magnetometer - DC magnetization measurements down to 90 mK and up to 8000G. contact ( )
Micrometric magnetic field probe (2DEG micro-Hall sensor)- local magnetization measurements at low temperatures (4.2 K < T < 200K) and in magnetic fields. contact ( or )
Linear/Non-linear dielectric spectrometer (20 < T < 300K and 0.01Hz < f < 200kHz). contact ( or )
#930 - Last update : 10/26 2010
More ...
Transition Vitreuse dans un Ferrofluide : En mettant des nanoparticules magnétiques en suspension dans un liquide, on obtient un ferrofluide. Ce dernier a les propriétés mécaniques d’un liquide et celles d’un matériau magnétique à température élevé (paramagnétisme). Les ferrofluides ont de nombreuses applications, par exemple dans les technologies aérospatiales, le transfert de chaleur ou la médecine.


Retour en haut