| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
4 sujets /NIMBE/LEEL

Dernière mise à jour :


 

In situ Magic Angle spinning NMR analysis of Li-ion batteries

SL-DRF-24-0325

Research field : Electrochemical energy storage incl. batteries for energy transition
Location :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Magali GAUTHIER

Alan WONG

Starting date : 01-10-2024

Contact :

Magali GAUTHIER
CEA - DRF/IRAMIS/NIMBE/LEEL

01 69 08 45 30

Thesis supervisor :

Alan WONG
CNRS - DRF/IRAMIS/NIMBE/LSDRM


Personal web page : https://iramis.cea.fr/nimbe/Pisp/magali.gauthier/

Laboratory link : https://iramis.cea.fr/nimbe/LEEL/

In situ solid-state Nuclear Magnetic Resonance (ssNMR) is a valuable characterization tool to decipher the electrochemical phenomena during battery operation. However, the broad signal lineshapes acquired from the sample static condition often retrain from the full potential of ssNMR characterization. Ex situ ssNMR experiments, using Magic-Angle sample Spinning (MAS), are often necessary to interpret the in situ data. As in any ex situ characterizations, the analyses do not always represent the real electrochemistry because of unwanted artifacts from the ex situ sample preparation, i.e., cell dismantling and electrode separations. Consequently, in situ ssNMR applications have been limited. The PhD student will address this limitation by developing a spinning battery cell for acquiring high-resolution ssNMR data under MAS for in situ study, including a new method of spatially-resolved ssNMR spectroscopy. Combining in situ, MAS, and localized spectroscopy would lead to an unprecedented in situ ssNMR tool for deciphering fundamental insights into battery chemistry, which the student will emphasize by studying phenomena such as interfaces and dendrite formation in operating Li-ion batteries.
Numerical twin for the Flame Spray Pyrolysis process

SL-DRF-24-0402

Research field : Numerical simulation
Location :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Starting date : 01-10-2024

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Thesis supervisor :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Personal web page : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=leconte

Laboratory link : https://iramis.cea.fr/nimbe/leel/

Our ability to manufacture metal oxide nanoparticles (NPs) with well-defined composition, morphology and properties is a key to accessing new materials that can have a revolutionary technological impact, for example for photocatalysis or storage of energy. Among the different nanopowders production technologies, Flame Spray Pyrolysis (FSP) constitutes a promising option for the industrial synthesis of NPs. This synthesis route is based on the rapid evaporation of a solution - solvent plus precursors - atomized in the form of droplets in a pilot flame to obtain nanoparticles. Unfortunately, mastery of the FSP process is currently limited due to too much variability in operating conditions to explore for the multitude of target nanoparticles. In this context, the objective of this thesis is to develop the experimental and numerical framework required by the future deployment of artificial intelligence for the control of FSP systems. To do this, the different phenomena taking place in the synthesis flames during the formation of the nanoparticles will be simulated, in particular by means of fluid dynamics calculations. Ultimately, the creation of a digital twin of the process is expected, which will provide a predictive approach for the choice of the synthesis parameters to be used to arrive at the desired material. This will drastically reduce the number of experiments to be carried out and in consequence the time to develop new grades of materials
Hybrid solid electrolytes for "all-solid" batteries: Formulation and multi-scale characterization of ionic transport

SL-DRF-24-0634

Research field : Physical chemistry and electrochemistry
Location :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Saïd Yagoubi

Thibault CHARPENTIER

Starting date : 01-10-2024

Contact :

Saïd Yagoubi
CEA - DRF/IRAMIS/NIMBE/LEEL

+ 33 1 69 08 42 24

Thesis supervisor :

Thibault CHARPENTIER
CEA - DRF/IRAMIS/NIMBE/LSDRM

33 1 69 08 23 56

Personal web page : http://iramis.cea.fr/Pisp/said.yagoubi/

Laboratory link : http://iramis.cea.fr/nimbe/leel/

More : http://iramis.cea.fr/nimbe/lsdrm/

Lithium-ion batteries, widely present in our daily lives, have revolutionized portable applications and are now used in electric vehicles. The development of new generations of batteries for future applications in transport and storing electricity from renewable sources is therefore vital to mitigating climate change. Lithium-ion technology is generally considered as the preferred solution for applications requiring high energy density, while sodium-ion technology is particularly attractive for applications requiring power.

However, the intrinsic instability of liquid electrolytes results in safety issues. Faced with the requirements concerning the environment and safety, solid-state batteries based on solid electrolytes can provide an effective solution while meeting battery energy storage needs. The barriers to overcome allowing the development of all-solid-state battery technology consist mainly in the research of new chemically stable solid electrolytes with good electrical, electrochemical and mechanical performance. For this goal, this thesis project aims to develop “polymer/polymer” and “ceramic/polymer” composite solid electrolytes with high performance and enhanced safety. Characterizations by electrochemical impedance spectroscopy (EIS) will be carried out in order to understand the cation dynamics (by Li+ or Na+) at the macroscopic scale in composite electrolytes, while the local dynamics will be probed using advanced techniques of Solid-state NMR (23Na / 7Li relaxation, 2D NMR, in-situ NMR & operando). Other characterization techniques such as X-ray and neutron diffraction, XPS, chronoamperometry, GITT ... will be implemented for a perfect understanding of the structure of electrolytes as well as aging mechanisms at the electrolyte / electrolyte and electrolyte/electrode interfaces of the all-solid battery.

Key words: composite solid electrolyte, all-solid-state battery, interfaces, multiscale characterization, dynamics of Li + and Na + ions, electrochemical performance, solid-state NMR, X-ray / neutron diffraction.
Effect of substitution on the ferroelectric and photocatalytic properties of Barium Titanate nanoparticles

SL-DRF-24-0401

Research field : Ultra-divided matter, Physical sciences for materials
Location :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Starting date : 01-10-2024

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Thesis supervisor :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Personal web page : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=leconte

Laboratory link : https://iramis.cea.fr/nimbe/leel/

As part of the energy transition, the production of hydrogen from solar energy appears to be an extremely promising means of storing and then producing energy. To develop on a large scale, water photoelectrolysis requires materials with high catalytic efficiency. Among the candidates considered, materials derived from barium titanates appear promising because their ferro- and piezoelectric properties could increase their photocatalytic effect. Therefore, we propose to synthesize BaTiO3 nanoparticles by flame spray pyrolysis and to make substitutions on Ba and O in order to study the effect of these modifications on the ferroelectric properties of the material. The addition of noble metal inclusions to the surface of the particles, likely to improve catalysis, will also be addressed. Finally, photocatalysis and piezocatalysis tests will make it possible to establish the links between ferroelectric and catalytic phenomena in this family of materials. This subject will be carried out in collaboration between the LEEL of the CEA and the SPMS of Centrale – Supelec.

 

Retour en haut