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Abstract

The energy dependence and intensity of Coulomb interaction between quasiparticles in metallic wires are obtained from two

different methods: determination of the temperature dependence of the phase coherence time from the magnetoresistance, and

measurements of the energy distribution function in out-of-equilibrium situations. In both types of experiment, the energy

dependence of the Coulomb interaction is found to be in excellent agreement with theoretical predictions. In contrast, the

intensity of the interaction agrees closely with theory only with the first method, whereas an important discrepancy is found

using the second one. Different explanations are proposed, and results of a test experiment are presented.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The description of electrical transport in metals is based

on the existence of long-lived quasiparticles. The finite

quasiparticle lifetime appears in mesoscopic physics as a

limitation of their phase coherence time, which determines

the amplitude of quantum interference effects. The three

kinds of processes that limit the quasiparticle lifetime in

metals are electron–phonon scattering, electron–electron

scattering [1], and spin-flip scattering of electrons from
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magnetic impurities [2,3]. At temperatures below about 1 K,

the rate of electron–phonon scattering is weak, and in

metallic samples without magnetic impurities the dominant

inelastic scattering process should be the Coulomb inter-

action between electrons [1].

In this paper, we focus on experiments performed on

very clean (99.9999%) silver wires, in which the effect of

magnetic impurities is expected to be small [4,5]. We review

the results obtained from weak localization measurements,

in which the phase coherence time t4ðTÞ is extracted, and

from energy relaxation experiments, in which the energy

exchange rate between quasiparticles is derived from their

energy distribution function f(E). In the former experiments,

we find that both the temperature dependence and overall

magnitude of t4ðTÞ agree with the theoretical predictions. In

the latter experiments, the energy dependence of the inelastic

rate agrees with theoretical predictions, but the overall

magnitude fluctuates significantly from sample to sample.
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Fig. 1. Schematic diagram showing the spatial and energy

dependence of the distribution function fx(E) of QPs driven out-

of-equilibrium by the voltage U using the geometry of Fig. 6 with

the switch in position 1. The surrounding box shows the uniform

density of states in the metal and the gray volume shows the occupied

states whose normalized density is fx(E)nx(E). The thick line shows a

typical double step distribution function at xZ1/4 as in Fig. 7.
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2. Two experiments for measuring Coulomb interaction

between QPs

In metallic thin films, quasiparticles (QPs) experience

frequent elastic scattering from grain boundaries, film edges

and impurities. In this diffusive regime, characterized by a

diffusion constant D, the screening of the Coulomb

interaction is retarded, and the corresponding (squared)

matrix element between two QPs, derived by Altshuler and

Aronov in the early 1980s [1], depends on the energy 3

exchanged during the interaction process: jM(3)j2f3K3/2 in

quasi-one-dimensional wires. This energy dependence

results in a temperature dependence of the phase coherence

time t4ðTÞfTK2=3 [6], which has been observed in

aluminum and silver wires by Wind et al. [7] down to

1 K, and by Echternach et al. [8] in gold wires down to

100 mK. The most convenient method to access t4 is the

measurement of the magnetoresistance of wires with a

length L long compared to the phase coherence length L4Zffiffiffiffiffiffiffiffiffi
Dt4

p
; which exhibits a small peak or dip at zero magnetic

field due to weak localization [9]. When the rate of spin

precession due to spin-orbit coupling exceeds the dephasing

rate, as is usually the case at low temperature, the relative

amplitude of the zero-field dip in the resistance gives direct

access to L4 :

dR

R
zK

R

RK

L4

L

with RKZh/e2z26 kU the resistance quantum. The width in

field of this dip corresponds to a flux quantum in the area

L4w; with w the wire width. In practice, magnetoresistance

curves measured at different temperatures are fit with a

theoretical expression for (dR/R)(B) in which the only fit

parameters are the phase coherence length L4; the spin-orbit

length Lso, and the width of the wire w [4]. The two last

parameters, Lso and w, are fixed at a constant value

independent of temperature for each sample [10]. Then, t4
is obtained as L24=D; with D obtained from the resistance RZ
ð1=nFe

2DÞðL=wtÞ where nF is the density of states at the Fermi

energy (2 spin directions) and t the wire thickness. In order to

compare with theory, the resulting curve t4ðTÞ is fit with

t4ðTÞZ ðAT2=3 CBT3ÞK1: (1)

where AT2/3 is the Coulomb interaction rate and BT3 the

approximate electron–phonon scattering rate [11].

In theory, the exchange part of the Coulomb interaction

leads to [12]

AZ
1

Z

pk2B
4nFLwt

R

RK

� �1=3

: (2)

The contribution due to the Hartree term has not been

evaluated for wires [13].

Another experimental method to access the interaction

processes consists in driving the QPs out-of-equilibrium by

a finite voltage U between two contacts at the ends of the
wire, which act as QP reservoirs [14]. At energies between

KeU and 0, the diffusion of QPs from the occupied states at

one end to empty states at the other end results, in absence of

inelastic processes, in a two-step distribution function fx(E)

inside the wire as pictured in Fig. 1. (The shorthand fx(E)

stands for f(x,E), where we measure distance in units of the

wire length L, so that 0!x!1.) This distribution function

can be understood as a linear interpolation between the

distribution functions at the boundaries of the wire. Electron–

electron interactions lead to a redistribution of energy between

QPs at each position, hence to a rounding of fx(E). In

experiments, fx(E) at a given position in the wire is deduced

from the differential conductance dI/dV(V) of a tunnel junction

between a super-conducting probe electrode and the wire. In

order to relate fx(E) to thematrix element of the interaction, the

data are fit with the solution of the stationary Boltzmann

equation in the diffusive regime [15,16]:

1

tD

v2fxðEÞ

vx2
CIin

collðx;E; ff gÞKIout
collðx;E; ff gÞZ 0 (3)

where Iin
collðx;E; ff gÞ and I

out
collðx;E; ff gÞ are the rates at which

quasiparticles are scattered in and out of a state at energy E

by inelastic processes. The diffusion time tDZL2/D is the

typical time spent by a QP in the wire. Assuming that the

dominant inelastic process is Coulomb interaction between

QPs and phonon emission or absorption, the inelastic

scattering integrals read

Iout
collðx;E; ff gÞZ

Ð
d3 fxðEÞð1K fxðEK3ÞÞWð3Þ

Iin
collðx;E; ff gÞZ

Ð
d3 fxðEC3Þð1K fxðEÞÞWð3Þ

with

Wð3ÞZWeKeð3ÞCWeKphð3Þ

WeKeð3ÞZKð3Þ
Ð
dE 0fxðE

0Þð1K fxðE
0 C3ÞÞ

WeKphð3ÞZ kph3
2ðnphðj3jÞCqð3ÞÞ
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The kernel function K(3)Zkee3
K3/2 is proportional to the

averaged squared interaction matrix element jM(3)j2

between two quasiparticles exchanging an energy 3 [1]. Its

intensity kee, which can be derived either from the

expression of the microscopic interaction potential [17,

18], or from the fluctuation–dissipation theorem [18], is [19]

kee Z ð
ffiffiffiffiffiffi
2D

p
pZ3=2nFwtÞ

K1 (4)

This derivation takes into account the exchange term only.

The Hartree contribution to K(3) is expected to be smaller

[1,17]. The electron–phonon coupling has an intensity kph
and is proportional to the sum of the Bose energy

distribution of phonons nph(j3j) representing stimulated

absorption or emission of phonons and the Heaviside

function q(3) representing spontaneous emission. A more

accurate description of electron–phonon coupling was

developed in Ref. [11]. However, we restrict here to the

simplistic form for WeKph because the effect of phonons is

very small. Thus, for all the fits to the experiments, we fix

the value of kph at 4 nsK1 meVK3, which is compatible with

the weak localization measurements [22].

The boundary conditions for Eq. (3) are Fermi-Dirac

distributions at the ends of the wire, with a temperature

higher than the cryostat temperature due to electron heating

in the reservoirs [20,23,24].

The link between the two parameters determining the

effect of Coulomb interaction, A and kee, can be made

explicit by noting that the dephasing rate is the average of

the inverse of the lifetime of QPs at energies within kBT of

the Fermi energy [25]:

1

t4
z2

ðkBT
Z=t4

d3
kee

33=2
kBTz

4keeffiffiffiffiffiffiffiffiffi
Z=t4

p kBT

so that

1

t4
z

4keekBffiffiffi
Z

p

� �2=3

T2=3:

While this derivation reproduces the correct dependence on

sample parameters of the more rigorous theory [6,12], the

prefactor depends on the exact value of the cutoff, whose

order of magnitude is Z=t4: The choice of the cutoff can be

made so that our derivation stays consistent with the

expressions Eqs. (2) and (4) of A and kee. Thus it is possible

to express A as an intensity kA for Coulomb interaction,
Table 1

Geometrical and electrical characteristics of samples for weak localizatio

Sample L (mm) w(nm) t

Ag(6N)a 136 65 4

Ag(6N)b 271 100 4

Ag(6N)c 400 105 5

Ag(6N)d 285 90 3

The diffusion coefficientD is obtained using Einstein’s relation 1/rZnFe
2D

resistivity r extracted from the resistance R, thickness t, length L and wid
using

Ah
pkAkB

2
ffiffiffi
Z

p

� �2=3

: (5)
3. Comparison between experimental and theoretical

results for both methods

We present here data taken on wires deposited from 6N-

purity (99.9999%) silver sources. The fabrication procedure

for weak localization type (WL) samples is described in

Ref. [4]. The sample parameters are given in Table 1 (weak

localization measurements) and Table 2 (energy relaxation

measurements). The names of the samples used in energy

relaxation (Relax) experiments contain Roman numerals,

which indicate the index of the experiment, and a number,

which is the approximate wire length in microns. Most

Relax samples were obtained in a single step, using two-

angle evaporations through a suspended mask [20]. Samples

AgII5 and AgII10, on the one hand, and AgIV20a and

AgIV20b, on the other hand, were fabricated at the same

time, on the same chip. Samples AgXI10, AgXII40 and

AgXV40 were fabricated in two steps of e-beam lithogra-

phy: in a first step, the wire pattern was defined, then silver

was evaporated and followed by a lift-off, and a new

deposition of resist. In a second step, the pattern for the

aluminum electrodes was exposed to the electron beam. In

the vacuum chamber of the deposition machine, the silver

layer was cleaned by argon ion milling. A thin (3 nm) layer

of aluminum was then deposited, followed by an oxidation

in 1.3 mbar of oxygen–argon (20–80%) during 8 min, in

order to form the tunnel barrier. Finally, a layer of aluminum

was deposited.

In Fig. 2, we present t4ðTÞ for the first three WL samples

(the data points of the last one, which are presented in

Ref. [4], are so close to those of the third one that they would

confuse the figure), as well as the best fits with Eq. (1). The

fit parameters are given in Table 3. The fit value of A is very

close to the theoretical value for the exchange contribution

of the Coulomb interaction, as can be seen in Fig. 4 where

the X-coordinate of the solid squares is the theoretical value

of kA using Eqs. (2) and (5), and the Y-coordinate is the

value from experiment.

The situation is quite different in energy relaxation
n measurements

(nm) R (kU) D (cm2/s)

7 1.44 117

5 3.30 69.2

3.5 1.44 187

6 2.00 167

with the density of states in silver nFZ1.03!1047 JK1 mK3, and the

th w of the wire.



Table 2

Geometrical and electrical characteristics of samples for energy relaxation measurements

Sample L (mm) w (nm) t (nm) R (U) D (cm2/s) tD (ns)

AgI5 5.05 90 43 41 121 2.1

AgII5 5.2 66 39 44 173 1.6

AgII10 10.3 65 39 81 191 5.6

AgIII20 19.6 160 43 45 241 16

AgIV20a 19.7 95 44 86 208 19

AgIV20b 19.9 100 44 91 188 21

AgX20 21.7 100 48 80 214 22

AgXI10 9.55 124 45 31 211 43

AgXII40 38 180 45 108([26]) 165 87

AgXV40 38 145 45 134 165 87
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experiments. We show in Fig. 3 distribution functions f(E)

measured in the middle of sample AgIV20a, for U ranging

from 0.1 to 0.5 mV, plotted as a function of the reduced

energy E/eU. Solid lines are fits resulting from the

numerical solution of the Boltzmann equation, obtained

with keeZ0.40 nsK1 meVK1/2. The increase in slope of the

middle step of f(E) when U increases, characteristic of the

effect of Coulomb interaction, is well reproduced. However,

the fit value for kee is nearly an order of magnitude larger

than the value given by Eq. (4). Similar discrepancies exist

for the other Relax samples. It could be argued that the

numerical prefactor in Eq. (4) is incorrect. Fig. 4 seems to

rule out this explanation: the circles corresponding to the

theoretical and fit values, given also in Table 4, present a

large scatter, and so the ratio between experiment and theory

does not appear to be constant.
Fig. 2. Phase coherence time vs. temperature in samples Ag(6N)a

(-), Ag(6N)b (;), and Ag(6N)c (C), all made of 6N sources.

Continuous lines are fits of the data to Eq. (1). The quantitative

prediction of Eq. (2) for electron–electron interactions in sample

Ag(6N)c is shown as a dashed line.
4. Discussion of the discrepancy between the two

experiments

Fig. 4 reveals a very puzzling difference between weak

localization (WL) and energy relaxation (Relax) exper-

iments. Whereas the results of both types of experiments are

precisely accounted for by the theory of Coulomb

interactions in disordered wires as far as the energy

dependence is concerned, the prefactor is well understood

for the first, but not at all for the second. In order to resolve

this puzzle, we now list the differences between the two

types of experiments.

4.1. Possibility of extrinsic energy exchange processes in

Relax samples

WL experiments are extremely sensitive to very small

quantities of magnetic impurities. It was shown in Ref. [4]

that even in our cleanest Ag(6N) wires, there was evidence

for magnetic impurities at concentrations of about 0.01 ppm,

i.e. 1 impurity atom for every 108 Ag atoms. Their
Fig. 3. Measurements (B) and fits (solid curves) of the quasiparticle

energy distribution function f1/2(E) for five different values of the

applied voltage U across the wire AgIV20a. The data have been

shifted vertically for clarity.



Table 4

Theoretical predictions of Eq. (4) ðk
thy
ee Þ and fit parameters (kee) for

fx(E) in the samples of Table 2 using the solution of the Boltzmann

equation Eq. (3)

Sample k
thy
ee (nsK1 meVK1/2) kee

AgI5 0.060 0.95

AgII5 0.076 0.5

AgII10 0.073 0.54

AgIII20 0.024 0.5

AgIV20a 0.043 0.40

AgIV20b 0.043 0.37

AgX20 0.037 0.11

AgXI10 0.032 !0.18

AgXII40 0.025 0.18

AgXV40 0.031 0.32

The distribution functions measured on sample AgXI10 were so

close to the non-interacting regime that it was only possible to give

an upper bound to the value of kee. Comparison of k
thy
ee and kee is

shown graphically in Fig. 4.

Table 3

Theoretical predictions of Eq. (2) (Athy) and fit parameters (A and B)

for t4ðTÞ in the samples of Table 1 using the functional form given

by Eq. (1)

Sample Athy

(nsK1 KK2/3)

A B

(nsK1 KK3)

Ag(6N)a 0.55 0.73 0.045

Ag(6N)b 0.51 0.59 0.05

Ag(6N)c 0.31 0.37 0.047

Ag(6N)d 0.47 0.56 0.044

Comparison of Athy and A is shown graphically in Fig. 4.
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contribution to t4 was visible only at the lowest exper-

imental temperatures. In Fig. 4, we have indicated with the

vertical dashed lines how far the fit values of kA can be

reduced if one includes a small concentration of magnetic

impurities as an extra fit parameter.

It is now understood that magnetic impurities also

mediate energy exchange between electrons [3,5]. Could the

presence of magnetic impurities explain the anomalously

large apparent values of kee observed in many Relax

experiments? Since most of the Ag samples used in the WL
Fig. 4. Comparison of the experimental prefactor with the

theoretical prediction Eqs. (2), (4) and (5), for weak localization

experiments (-) and energy relaxation experiments (B). If we

assume that a small amount of magnetic impurities is present in the

WL samples, the fit values of kA can be reduced down to the bottom

of the dashed lines below the squares. Similarly for the Relax

experiments, if we assume that magnetic impurities are present, we

obtain a range of values of kee compatible with the data, represented

as a dashed line below the B. The behavior of sample AgX20 was

measured in a magnetic field, allowing us to place an upper bound

on the concentration of magnetic impurities, and hence to rule out

the possibility of reducing the value of kee more than 15%. Thus,

this data point is represented as a bold circle without any dashed

line.
experiments were fabricated in the same deposition system

used for the Relax samples, we expect that Relax samples

should be equally clean. This hypothesis must be checked,

however. The presence of magnetic impurities in Relax

samples can be detected directly by performing the

experiment as a function of magnetic field [5]. In samples

AgX20 and AgXI10, the magnetic field dependence of the

measurements set an upper bound to the concentrations of

magnetic impurities at 0.1 and 0.6 ppm, respectively. For

sample AgX20, if we include the effect of 0.1 ppm of

magnetic impurities into the analysis of the Relax data, the

value of kee is reduced by only 15%. In sample AgXI10, the

distribution functions were so close to the non-interacting

regime that it was only possible to place an upper bound on

kee, hence this sample does not appear in Fig. 4.

For the Relax samples that were not measured in a

magnetic field, no upper bound to the concentration of

magnetic impurities is experimentally determined. We have

estimated the resulting systematic uncertainty in kee by the

following analysis. We have assumed that electron–electron

interactions mediated by magnetic impurities contribute to

energy exchange. For this process, the interaction kernel is

approximately K(3)Zk23
K2 [3,27]. If we fit the data using

the value of k2 as an additional fit parameter, we can ask

how small the value of kee can become before the fits

become clearly incompatible with the data. The results are

shown by the dashed lines descending below the points for

the Relax samples in Fig. 4. As can be seen, for some

samples the fits are somewhat insensitive to the relative

weights of kee and k2, and the discrepancy between theory

and experiment gets smaller. Nevertheless, the discrepancy

still remains. We conclude for the time being that extrinsic

energy exchange processes with K(3)f3K2 are unlikely to

explain completely the discrepancy between experiment and

theory. This issue will be discussed further in Section 6.
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4.2. Sample dimensionality

The intensity and energy dependence of Coulomb

interaction depends on sample dimensionality [1]. The

one-dimensional (1D) regime described in Section 2

corresponds, in WL experiments, to situations where w, t/
L4/L: This inequality is well obeyed in our experiments,

where L4 varies between 1 and 20 mm. In practice, the wire

length L was chosen much larger than L4ðTminÞ; where Tmin

is the lowest experimental temperature, in order to reduce

the amplitude of conductance fluctuations, which spoil the

analysis of the magnetoresistance in terms of theWL theory.

In Relax experiments, on the other hand, the distribution

function f(E) only contains information on the interaction

process if it is far from a Fermi function and far from a

perfect double-step, i.e. if Lzfew L4 (eUmax/kB). Thus the

wire length is smaller than for the WL experiments. The

dimensionality criterion for Relax is illustrated in Fig. 5,

where we plot the function K(3) calculated using the

discrete sum over the longitudinal and transverse wave

vectors [17,28]

Kð3Þf
X
qxs0
qy ;qz

1

D2q4 þ ð3=ZÞ2
ð6Þ

where qxZpnx/L, qyZpny/w and qzZpnz/t are the wave

vector components with nx2N
* and ny; nz2N:

Typical sample dimensions were chosen: LZ10 mm,

wZ130 nm, tZ45 nm and DZ200 cm2/s. Fig. 5 shows that

for all relevant energies in the experiments, K(3) is far from
Fig. 5. Energy dependence of the kernel K(3) of Coulomb

interaction in a wire with LZ10 mm, wZ130 nm, tZ45 nm and

DZ200 cm2/s. The asymptotic zero-, one- and three-dimensional

regimes (0D, 1D, 3D) are characterized by K(3)ZK(0), K(3)f3K3/2

and K(3)f3K1/2, respectively (straight lines). The two-dimensional

regime is not clearly visible because wzt. The range of relevant 3’s

for the Relax experiments is determined by kBTmin and eUmax. The

normalization factor on the y-axis is K(0)Z(45p(ZD/L2)2ZnFwtL)
K1.
the 1D–3D transition. For small energies near kBTmin, the

behavior of K(3) differs slightly from the one-dimensional

3K3/2 power law, but this deviation goes in the wrong

direction to explain the discrepancy between theory and

experiment.

4.3. Diffusive approximation in narrow wires

The energy scales probed by WL and Relax experiments

are rather different. In wires, the value of t4 is essentially

determined by the low energy cut-off of the interaction, at

Z=t4: In the samples presented here, t4 ranges (in the

relevant temperature range: 1 K down to 40 mK) from 1 to

20 ns, corresponding to energies Z=t4 between 0.03 and

0.6 meV. In the Relax experiments, the shape of f(E) is

entirely determined by energy exchanges of an amount

between kBT and eU, in practice between 4 and 500 meV.
According to Eq. (6), the characteristic lengthscale 1=qZffiffiffiffiffiffiffiffiffiffi
ZD=3

p
for the interaction is therefore a few micrometers for

WL, several hundreds of nanometers for Relax. The

discrepancy between the results of the two types of

experiment could point out a failure of the diffusive

model, in which the QP dynamics is described by a single

diffusion constant D. This argument is reinforced by the fact

that the elastic mean free path deduced from D is of the

order of the wire thickness t, indicating that surface and

grain boundary scattering dominate the elastic processes. If

surface scattering alone were dominant, the elastic mean

free path of QPs with an instantaneous wavevector along the

axis of the wire would be very different from that of QPs

travelling in a perpendicular direction, and the diffusive

approximation would break down. To our knowledge,

Coulomb interaction has never been investigated in this

regime. However, it is not clear why this situation could be

described by the same energy dependence and why the

intensity could be larger.

4.4. Departure from equilibrium

WL experiments are performed very close to equili-

brium. In Relax experiments, a voltageU[kBT/e is applied

to the wires in order to establish an out-of-equilibrium

situation. Near the Fermi level, the distribution function is

very different from a Fermi function, and it could be argued

that the derivation leading to the expression (4) of the

prefactor kee is no longer valid. In order to test this

hypothesis, we have performed a complementary exper-

iment, described below, in which the effect of the distance to

equilibrium is investigated.
5. A new Relax experiment close to equilibrium

Fig. 6 shows a schematic of sample AgXII40, which was

designed to investigate the effect of the deviation of f(E)

from an equilibrium Fermi distribution. As in other Relax



Fig. 6. Schematic diagram of an experiment to measure fx(E) in a

wire close to equilibrium. Quasiparticles are injected into the wire

from a superconducting wire (labelled injector) through a tunnel

junction biased at potential U (switch position 2). The distribution

function fx(E) at position xZ0.25 is then determined from the dI/dV

characteristic of the probe junction. Alternatively, the wire can be

driven far from equilibrium by applying the voltage bias U across

the wire (switch position 1). The resistance RB is chosen so that the

potential of the right reservoir remains close to zero when the switch

is in position 2.
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experiments, a wire (38 mm long, 180 nm wide, 45 nm

thick) is placed between large contact pads. A super-

conducting probe electrode is placed at xZ1/4, with a tunnel

resistance to the wire of 15 kU. The size of the tunnel

junction was 0.18!0.23 mm2. When the switch on Fig. 6 is

placed in position 1, the ‘conventional’ Relax experiment

can be performed. A measured distribution function is

shown in Fig. 7. The intensity of the Coulomb interaction

deduced from the fits of f(E) is keeZ0.18 nsK1 meVK1/2, as

indicated in Table 4. Eq. (4) has been used [26] to calculate

the theoretical value k
thy
ee Z0:025 nsK1 meVK1=2: This dis-

crepancy is of the same type as the one observed in the other
Fig. 7. Measured (B) distribution function f1/4(E) in the

‘conventional’ Relax experiment using sample AgXII40 with the

switch of Fig. 6 in position 1, and for UZ0.2 mV. The solid line is a

numerical solution to the Boltzmann equation using the prefactor

keeZ0.18 nsK1 meVK1/2 for the Coulomb interaction between

electrons. As shown by the three dot-dashed lines, other values of

kee produce markedly worse fits to the data. In particular, the

theoretical value keeZ0.025 nsK1 meVK1/2 does not come close to

reproducing the experimental results.
samples of Table 4. A second superconducting electrode,

denoted injector in Fig. 6, forms a tunnel junction with the

wire around its center, but with a much smaller resistance

RinjZ1.1 kU than the probe junction, resulting from a larger

area: 0.57!0.8 mm2. This junction was obtained at the

overlap between the winjZ0.8 mm-wide superconducting

electrode and the wire, which presents an intentional

broadening at this position. When the switch of Fig. 6 is

placed in position 2, quasiparticles are injected through the

tunnel junction into the wire when jUjOD/e, with D the gap

in the QP density of states of the injector. On the normal side

of the tunnel junction, the QP distribution function is

therefore expected to display a step, the shape ofwhich reflects

the BCS density of states nSðEÞZReðjEj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2KD2

p
Þ: The

height of the step away from the BCS peak is given by the

ratio of the injection rate of QPs to the diffusion rate towards

the two normal reservoirs: f1=2ðEÞwðR=4Þ=Rinjhr (the factor

1/4 results from the parallel combination of the two halves

of the normal wire as will be shown below). A quantitative

description follows from the introduction of new boundary

conditions in the Boltzmann Eq. (3): fx(E) is a Fermi

function with a zero electrochemical potential at xZ0 and

KeUr at xZ1, whereas at xZ1/2 current conservation at

each energy implies

nFwteD
vfxðEÞ

Lvx
jxZ1=2C K

vfxðEÞ

Lvx
jxZ1=2K

� �
Z iinjðEÞ

with

iinjðEÞZ
1

eRinj

nSðECeUÞðfSðECeUÞK f1=2ðEÞÞ

where fS(E) is the distribution function in the super-

conducting injector. We neglect here the slight modification

of the DOS in the wire due to proximity effect, because of

the small transparency of the tunnel barrier. Finally,

vfxðEÞ

vx
jxZ1=2C K

vfxðEÞ

vx
jxZ1=2K

Z
R

Rinj

nSðECeUÞðfSðECeUÞK f1=2ðEÞÞ: (7)

The electrical potential of the right reservoir, which is

connected togroundbyabias resistanceRBZ12 U, is givenby

Ur Z
1

2

RRB

RCRB

ð
iinjðEÞdE!

RB

2Rinj

U:

SinceRB/2Rinjx0.005, wemake the approximationUrZ0, so

that the situation is symmetric: fx(E)Zf1Kx(E) and Eq. (7)

becomes

vfxðEÞ

vx
jxZ1=2C ZK

vfxðEÞ

vx
jxZ1=2K

Z 2rnSðECeUÞðfSðECeUÞK f1=2ðEÞÞ: (8)

In the absence of interactions, at TZ0, one obtains directly for



Fig. 9. Measured (B) distribution function f1/4(E) in the new Relax

experiment using sample AgXII40 depicted in Fig. 6, with the

switch in position 2, and for UZK0.27 mV. The data are also

shown magnified by a factor 10 (right scale). The solid line is a

numerical solution to the Boltzmann equation with boundary

condition given by Eq. (9), using as prefactor for the Coulomb

interaction keeZ0.18 nsK1 meVK1/2. The two dot-dashed lines

show that other values of kee produce markedly worse fits to the

data.
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x!1/2 (assuming U!KD):

fxðEÞZ

1 for E!0

2xf1=2ðEÞ for E2½0;KeUKD�

0 for EOKeUKD

8><
>:

and

f1=2ðEÞZ
rnSðECeUÞ

1CrnSðECeUÞ
(9)

The spatial dependence of fx(E) is plotted in Fig. 8 for x!1/2,

assuming rZ0.1 for visibility (in the experiment, rx0.025). It

is seen that fx(E) is much closer to a Fermi function than when

the voltage is applied across the wire.

An experimental curve, obtained for UZK0.27 mV, is

shown in Fig. 9. As predicted, it presents a very small step

(f1/4(E)z0.025) extending from EZ0 to EZKeUKD, with
DZ0.18 mV the gap for the injector deduced from its I–V

characteristic, measured separately. The blow-up (!10,

right scale) shows the expected small peak near EZKeUK
D. We also show f(E) calculated using the same parameters

as those deduced from the ‘conventional’ measurement,

using Eqs. (3) and (8). Except for a slight rounding of the

small peak, the agreement is within experimental accuracy

for all the values of U for which data were taken (K0.22 to

K0.31 mV). We show in particular that other values of kee
would produce curves, which significantly differ from the

measured one. Hence the value of kee deduced from energy

exchange experiments does not seem to depend on whether
Fig. 8. Schematic diagram showing the spatial and energy

dependence of the distribution function fx(E) of QPs driven out-

of-equilibrium by the voltage U using the geometry with the switch

of Fig. 6 in position 2 (we have assumedU!KD). The surrounding

box shows the density of states along the circuit and the gray

volume shows the occupied states whose normalized density is

fx(E)nx(E). The inelastic processes involving QPs are assumed to be

very weak for clarity. The thick line shows the distribution function

f1/4(E) at xZ1/4.
the distribution is far from equilibrium, as in the original

experiment (Fig. 7), or close to equilibrium, as in the newer

experiment described here. Our conclusion is that Coulomb

interaction is not modified by the fact that f(E) is not exactly

a Fermi function.
6. Conclusions

In Section 4.1, we discussed the possibility that the

anomalously high rates of energy exchange observed in

many Relax experiments could be caused by residual

magnetic impurities. Two arguments against this hypothesis

were: (1) it seems implausible that all samples used in Relax

experiments contain impurities that are not present in any

sample used for localization experiments, since both kinds

of samples were fabricated in the same apparatus; and (2)

we checked whether adding a term of the form K(3)f3K2 to

the interaction kernel could significantly decrease the value

of kee obtained from fitting the data to the solution of Eq. (3).

But those two arguments do not rule out another possibility,

namely that both kinds of samples contain magnetic

impurities with integer spin and with a magnetic anisotropy

of the form KS2z in the impurity Hamiltonian [29]. Such a

term is predicted in the presence of spin-orbit scattering, for

magnetic impurities located close to the sample surface [30].

If the characteristic energyK satisfies kBT/K!eU; then

such impurities would contribute to energy exchange but not

to dephasing. The contribution to K(3) from such impurities

depends on both K and B, but is not expected to be of the

form K(3)f3K2. In principle, the presence of such

impurities should be detectable in experiments in the
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presence of a magnetic field. Indeed once gmB[eU, their

contribution vanishes. The absence of visible magnetic field

dependence in sample AgX20 seems to rule out this

possibility.

In conclusion, the energy dependence of Coulomb

interaction in disordered wires is well explained by theory.

The intensity of the interaction, as deduced from phase

coherence time measurements, is quantitatively in agree-

ment with theory, whereas for energy relaxation, an

unexplained discrepancy remains. A new version of the

Relax experiment has demonstrated that this discrepancy is

not due to the out-of-equilibrium situation.
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M. Krüger, C. Schönenberger, Appl. Phys. Lett. 71 (1997)

773.

[24] Surprisingly, the values of the reservoir heating parameters

that produce the best fits to the data are somewhat smaller than

the values calculated from the reservoir heating model

discussed in Ref. [23]

[25] B.L. Altshuler, B.D. Simon, in: E. Akkermans,

G. Montambaux, J.-L. Pichard, J. Zinn-Justin (Eds.), Meso-

scopic Quantum Physics, Elsevier Science B.V., 1994.

[26] The resistivity of the wire could not be accessed in the

experiment. It has been estimated by comparison with

AgXV40, which was fabricated simultaneously, assuming

equal diffusion constants.

[27] G. Goeppert, H. Grabert, Phys. Rev. B 64 (2001) 033301.

[28] Ya. Blanter, Private communication.
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