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We have determined the phase coherence time, Ty, from magnetoresistance
measurements of long, narrow wires of Au, Ag, and Cu, over the temperature
range 40 mK-6 K. In the Cu and Au wires, T4 saturates at low temperature.
In the Ag wire, T4 continues to increase down to the lowest temperatures mea-
sured; moreover, its temperature dependence below about 1 K is consistent
with theoretical predictions of Altshuler, Aronov and Khmelnitskii published
in 1982. These results cast doubt on recent assertions that saturation of 74
at low temperature is a universal phenomenon in metal wires. We compare
these results with those of recent experiments on energy relazation in similar
metallic wires. The results of the two experiments are strongly correlated,
suggesting that a single (unknown) mechanism is the cause of the enhanced
phase and energy relazation observed in some samples.
PACS numbers: 73.28.-b, 73.50.-h, 71.10.Ay, 72.70.+m.

1. INTRODUCTION

One of the fundamental properties of disordered conductors that has
been studied extensively the past 20 years is the phase coherence time of
the conduction electrons. At temperatures below about 1 K, the dominant
phase-breaking mechanism in nonmagnetic disordered metals is predicted
to be electron-electron scattering.!»? The corresponding phase-breaking rate
decreases as the temperature is lowered as a power law, Ty ! & TP, where p
depends on the effective dimensionality of the system. Recent experiments
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and analysis of several older experiments® show that the phase coherence
time in some samples tends to saturate at a finite temperature, in contrast
with theoretical expectations. A second consequence of electron-electron
scattering is energy exchange between quasiparticles. Recently, experiments
have been performed which provide information on the energy dependence,
as well as the overall rate, of energy exchange in mesoscopic wires driven out
of equilibrium by a current.®® Those experiments showed that the energy
relaxation rate in Cu wires was larger than predicted by theory, and the
energy dependence of the scattering rate was different from that predicted.

The purpose of the present work is twofold. First, we aim to shed light
on the issue of saturation of the phase coherence time, by measuring the
temperature dependence of 74 in wires of several different metals. Second,
we compare our results with those from the energy relaxation experiments, to
see if energy and phase relaxation are related in similarly prepared samples.
Energy relaxation experiments have now been performed on wires of Ag® and
Au’ in addition to the original work on Cu. For purposes of comparison, we
have therefore studied phase coherence in Cu, Ag, and Au wires.

2. EXPERIMENT

The wires used in our experiment were deposited on similar substrates,
and in the same electron-gun evaporator used to fabricate samples for the
energy relaxation experiments.>® The wires were patterned using e-beam
lithography and the lift-off process. Sample dimensions are given in Table
I. The three samples have very similar resistivity p, as deduced from the
resistance R, length L, width w and thickness ¢. The diffusion constants
D were deduced from p using Einstein’s relation. The only difference in
the fabrication procedure for these three samples is that the Au sample
was deposited on top of a thin (1 nm) layer of Al to improve adhesion
to the substrate. Sample widths vary from 65 to 110 nm, hence all the
samples are quasi one-dimensional with respect to the phase-breaking length,
Ly = /D74 and the thermal length, Lt = \/AD/kgT over the temperature
range studied. The samples were immersed in the dilute phase of the 3He-
“He mixture of a dilution refrigerator. Electrical lines to the sample were
filtered at the top of the cryostat and again near the sample. Resistance
measurements were performed using a standard ac four-terminal technique
with a lock-in amplifier. A ratio transformer was used in a bridge circuit to
enhance the measurement sensitivity to small changes in sample resistance.

Figure 1 shows the magnetoresistance of the Ag sample at several tem-
peratures. At low temperature, the magnetoresistance is positive, indicating
that the spin-orbit scattering length L, = /D7y, is shorter than Ly. Fig-
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TABLE 1
Sample L w t R o D L,
material | (um) (nm) (nm) (kQ) (2nm) (m?-s7!) (nm)
Au 271 100 45 2.0 33 0.010 58.5
Ag 136 65 45 1.4 30 0.012 75
Cu 271 110 45 1.9 35 0.007 520
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Fig. 1. Magnetoresistance data (circles) and fits to Eq. 1 (solid lines) for Ag
sample at different temperatures. The curves are offset vertically for clarity.

ure 1 shows that the magnitude of the weak localization contribution to the
magnetoresistance continues to increase down to the lowest temperatures
measured. Figure 2 shows similar raw data for the Cu sample. In contrast
to the Ag data, the magnitude of the magnetoresistance does not continue
to grow at low temperature, but saturates at about 1 K in the Cu sample.
The magnetoresistance is very small in the Au sample, indicating that
Ly is very short. In fact, the poor signal-to-noise ratio of the Au data
prevented us from obtaining reliable data at temperatures below 1 K. The
data we were able to obtain indicate that Ly had already saturated at 6 K.



450 A. B. Gougam et al.

AR/R

1 1 N 1 N L A 1

-0.04 -0.02 0.00 0.02 0.04
B (T)

Fig. 2. Magnetoresistance data (circles) and fits to Eq. 1 (solid lines) for Cu
sample at different temperatures. The curves are offset vertically for clarity.
Note the different vertical scales in Figs. 1 and 2.

3. ANALYSIS AND DISCUSSION

To obtain estimates of Ly and hence 74, we fit our data to the weak
localization expression for the magnetoresistance in 1D:8

AR _ R 3 L+—4 +1<—-——wBe)2 B (1)
R whL |2 (L 3L2, 3\ h

L (e’ o
2 Li 3 h

where we have omitted terms that describe spin-flip scattering by magnetic
impurities. Reliable determination of Ly, from the fit is only possible at the
higher temperatures shown, where the magnetoresistance changes slope at
high fields. At lower temperatures, we fix the value of L, and fit to the
single free parameter L.
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Echternach et al.” have emphasized that Eq. (1) is not strictly
valid at temperatures where the dominant phase-breaking mechanism is
electron-electron scattering with small energy transfer, also called Nyquist
scattering.! In that low-temperature limit, phase differences accumulate
slowly over many collisions, hence dephasing is not an exponential process.
We refer the reader to Ref. 9 for a complete discussion of this issue. Here
it suffices to say that experimental data does not allow one to distinguish
between the correct magnetoresistance formula in the Nyquist regime and
Eq. (1). The reason is that the function that enters in the Nyquist regime,
f(z) = Ai(z) /A (z), with Ai the Airy function, is well approximated for all
& by —(0.5 + z)~1/2, with corrections of at most 4%. Use of this approx-
imation in the correct magnetoresistance formula!? results in Eq. (1) with
Ty - 0.57151 + 7'¢_01, where 7'1\_,1 is the Nyquist dephasing rate and quol is the
dephasing rate due to electron-phonon scattering and any other mechanisms.
Realistically, 74 defined in this way is the only time accessible to experiment.

Figure 3 shows 74 versus temperature for our three samples. The differ-
ences, already apparent in the raw data, are striking. In the Ag sample, 74
continues to increase down to the lowest temperatures measured. In the Cu
sample, 74 saturates below 1 K at a value of 2 ns, while in the Au sample,
Ty saturates already at 6 K at a value of 10 ps. The theory of electron-
electron scattering in disordered conductors predicts that 7,4 should increase
as a power law as the temperature is lowered. For the 1D case, the predicted

—2/3
behavior in the Nyquist regime! !0 is 7, = 27y = 2 (e;—LR @) . To see

if our Ag data is consistent with this prediction, we have fit the temperature
dependence of 74 to the functional form:

7,1 = AT? + BT? (2)

where the second term is meant to describe electron-phonon scattering
at higher temperatures.!' The best values of the three fit parameters are
p=0.61, A=0.7 ns'K~%61 and B=55 us~1K~3, compared to the theoret-
ical predictions p=2/3, A=0.6 ns~'K~2/3. Thus the Ag data are in agree-
ment with the theory of Nyquist dephasing in both the overall magnitude
and temperature dependence.!? These results are consistent with those of
Wind et al.,'* who measured both the magnitude and width dependence of
the Nyquist dephasing rate in Ag and Al wires above 2 K, and with those of
Echternach and al.,? who found agreement with theory for the dephasing rate
of Au samples down to 100 mK. Our results thus extend by a factor of two
lower temperature the experimental confirmation of the Nyquist scattering
theory.

What conclusions can we draw from these results? First, our Ag data
contradict the recent experimental claim that saturation of 74 is universal in
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Fig. 3. Phase coherence time for the Ag(o), Cu(O) and Au(A) samples as
a function of temperature. The solid line is a fit of the Ag data to Eq. (2).

disordered metal wires.®> The proposed theoretical expression for the maxi-
mum value of 7, presented in that paper gives a result 7gmq; = 2 ns for our
Ag sample, about 5 times shorter than what we observe at our lowest temper-
ature. Second, since the macroscopic parameters (physical dimensions and
resistivity) of our three samples are nearly identical, any theoretical model
that predicts a maximum value of 74 based on those pﬁmeters alone must
be incorrect.'* Our work thus lends experimental support to recent theoret-
ical papers'®16 refuting the claim that saturation of T4 is universal. On the
other hand, our Cu and Au data show that some samples do show satura-
tion of 74. Since all three of our samples were measured in the same cryostat
under the same conditions, it is unlikely that the saturation is due to inter-
ference from external electromagnetic radiation, as was recently proposed.!?
The cause of the saturation is not yet known, but we will mention some re-
cent proposals at the conclusion of this paper. The small value of 74 in our
Au sample is curious, when compared with data from other workers.®® Fur-
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ther measurements on other samples will reveal whether the Al underlayer
has any influence on the dephasing rate.

4. COMPARISON WITH ENERGY RELAXATION

We now compare these results with those from the energy relaxation
experiments.*” The analysis of those experiments was performed within the
framework of the quantum Boltzmann equation.!”>18 The results of the anal-
ysis were expressed in terms of a kernel function, K (¢), which describes the
scattering rate between quasiparticles as a function of the energy ¢ exchanged
in the interaction. In the Appendix, we present a heuristic argument relat-
ing K () to the dephasing rate 7,~!. The main result of that calculation
is that if K(€) o e~® with o > 1, then the dephasing rate should have the
temperature dependence Td)_l o TV, Starting with Ag, Pierre et al.% have
found that with « = 1.5 in some samples, and « = 1.2 in others. The former
result is in agreement with the theory of electron-electron interactions,? and
is consistent with our observation that 747! oc 706! at low temperatures.
Furthermore, the prefactor in K (¢) is close to the theoretical prediction, con-
sistent with our similar observation for the dephasing rate. In Cu and Au,
the situation is more subtle. The original energy relaxation experiments® in
Cu found K (¢) = 75 *¢~2, with 79 = 1 ns. The characteristic scattering time
of 1 ns is very close to the dephasing time we observe at low temperature, but
the energy dependence of K(e) is not consistent with our observation of 74
saturation. According to the derivation given in the Appendix, K(¢) ox £72
should lead to 74! o« T%/2. In Au, the situation is similar. The energy
relaxation experiments’ find K () = 75 'e~2, with 7o = 100 ps, whereas we
observe saturation of 74 at 10 ps. We note that the Au samples used in the
energy relaxation experiment did not have the thin Al underlayer.

The fact that the energy dependence of K(e) deduced from the energy
relaxation experiments in Cu and Au is not consistent with the observed tem-
perature dependence of 74 may simply be telling us that electron-electron
collisions are not responsible for one or both of those observations. The anal-
ysis of the energy relaxation experiments assumes that two-body electron-
electron collisions are the dominant energy exchange process in the sample.
The relation between K(g) and 74 presented in the Appendix assumes the
same for dephasing. Since the results of neither experiment agree with the
theoretical prediction for electron-electron scattering, it is perhaps not sur-
prising that our comparison of the results from within that framework leads
to a contradiction.
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5. CONCLUSIONS

What then is the cause of the saturation of 74 we observe in our Cu
and Au samples? It was already argued by Mohanty et al. that magnetic
impurities are unlikely to be the cause of the saturation, since samples with
magnetic impurities deliberately added do not exhibit a saturation of the
dephasing rate.? Our results support that conclusion. Although it is well
known that magnetic impurities can lead to dephasing via spin-flip scat-
tering, it seems unlikely that they could provide an efficient mechanism of
energy exchange in the absence of an external magnetic field. There have
been recent suggestions that two-level systems may be responsible.!619 One
of those proposals!® relates the dephasing rate to the level of 1/f noise in
the sample at frequencies close to Ty 1 That proposal relies on assump-
tions about the distribution of tunneling centers in disordered metals that
have not been directly tested by experiment. The second proposal invokes
two-level systems with nearly degenerate ground states, which act as two-
channel Kondo impurities.!? It is argued that such systems can lead to a
temperature-independent dephasing rate over a limited temperature range,
below which the rate must tend to zero. It remains to be seen if either
of these ideas can explain the intriguing results regarding both phase and
energy relaxation in metal wires.
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APPENDIX

To facilitate comparison of the energy relaxation and phase relaxation
experiments, we present a heuristic derivation of the dephasing rate one
obtains from a given K(g).2° The out-scattering term in the Boltzmann
equation takes the form:

(B, {f}) = /dEdE'K(e)f(E)[l —[(E-f(BN1-fle+E)] (3)

where we have suppressed all reference to spatial variables. We assume
that the dephasing rate at temperature T' is equal to the out-scattering rate
with the initial state occupied and with equilibrium Fermi-Dirac distribution
functions fpp. Within the framework of Eq. (3), it makes no sense to include
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scattering events with energy transfer less than the dephasing rate itself,
hence we set the lower limit of the integral to i/ T¢.20 The upper limit is cut
off at = kT by the availability of unoccupied final states. We then have:

kgT
ol /h ., deK (e 4)

where

9(6) = [ dE frp(E )1 = fro(E + ) =ell e /oTI1 (5)

For 0 < e < kpT, g(¢) = kgT, so the final result is:

. kT
T, ~ kT deK (g) (6)
h/Ty
If K(e) x e with « > 1, then the integral is dominated by the low-energy
limit, and the dephasing rate has the temperature dependence 741 oc T/,
For the case of disordered metals of dimension d, the theoretical prediction?
is K(e) o el4=4)/2_ In 1D, this leads to the well-known result! 7,71 oc T?%/3.
We note here some possible limitations of the approach taken above.
Most notably, Eq. (4) indicates that dephasing occurs by single scattering
events with energy transfer greater than /74. This is in contrast with the
discussion given in the original theoretical papers,! where dephasing is de-
scribed by a process of gradual accumulation of phase during many collisions
with energy transfer < ii/74. Second, the approach shown here does not ad-
dress subtle differences between dephasing rates measured in different experi-
ments. Recently it has been shown both theoretically?! and experimentally??
that the dephasing rate measured in weak localization experiments is differ-
ent from that measured in universal conductance fluctuation experiments.
Nevertheless, we find it remarkable that the simple argument outlined above
gives the correct temperature dependence of the dephasing rate from the
energy dependence of K (¢).
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