| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les sujets de thèses

6 sujets IRAMIS

Dernière mise à jour :


««

• Matière ultra-divisée, physico-chimie des matériaux

 

Effet de la substitution sur les propriétés ferroélectriques et photocatalytiques de nanoparticules de titanate de barium

SL-DRF-24-0401

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=leconte

Labo : https://iramis.cea.fr/nimbe/leel/

Dans le cadre de la transition énergétique, la production d’hydrogène à partir de l’énergie solaire apparait comme un moyen de stockage puis de production d’énergie extrêmement prometteur. La photoélectrolyse de l’eau, pour se développer à grande échelle, a besoin de matériaux à haut rendement catalytique. Parmi les candidats envisagés, les matériaux dérivés des titanates de barium apparaissent prometteurs car leurs propriétés ferro- et piezoélectriques pourraient augmenter leur effet photocatalytique. Nous proposons donc dans ce sujet, mené en collaboration entre le LEEL du CEA et le SPMS de Centrale – Supelec, de synthétiser des nanoparticules de BaTiO3 par spray pyrolyse en flamme en opérant des substitutions sur Ba et O afin d’étudier l’effet de ces modifications sur les propriétés ferroélectriques du matériau. L’ajout d’inclusions de métaux nobles en surface des particules, susceptibles d’améliorer la catalyse, sera également réalisée lors de la synthèse de ces dernières. Enfin, des tests de photocatalyse et de piezocatalyse permettront d’établir les liens entre les phénomènes ferroélectriques et catalytiques dans cette famille de matériaux.
Evolution structurale sous irradiation électronique d’hydroxydes et hydrates lamellaires

SL-DRF-24-0532

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Marie-Noelle De Noirfontaine

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marie-Noelle De Noirfontaine
CNRS - DRF/IRAMIS/LSI


Directeur de thèse :

Marie-Noelle De Noirfontaine
CNRS - DRF/IRAMIS/LSI


Page perso : https://www.polytechnique.edu/annuaire/de-noirfontaine-marie-noelle

Labo : https://portail.polytechnique.edu/lsi/fr/recherche/defauts-desordre-et-structuration-de-la-matiere

Le contexte sociétal de l’étude est l’optimisation des matrices cimentaires pour le conditionnement des déchets nucléaires. Ces matrices cimentaires sont composées de minéraux hydratés, dont certains sont lamellaires (portlandite Ca(OH)2, brucite Mg(OH)2, brushite CaHPO4.2H2O, gibbsite Al(OH)3…). Très peu de données existent dans la littérature sur l’endommagement structural de ces minéraux lamellaires hydratés sous irradiation électronique. Le sujet de thèse proposé vise à investiguer expérimentalement les modifications structurales induites par irradiation dans divers types de composés, en vue d’une meilleure compréhension des mécanismes d’endommagement de ces composés sous irradiation et de dégager des critères de sensibilité à l’irradiation afin d’optimiser in fine la composition chimique et minéralogique des matériaux.
Exploration de la réactivité de catalyseurs à base d’oxyde par radiolyse

SL-DRF-24-0239

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Nathalie HERLIN

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Nathalie HERLIN
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169083684

Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Pisp/sophie.le-caer/

Labo : https://iramis.cea.fr/nimbe/LIONS

Voir aussi : https://iramis.cea.fr/nimbe/LEDNA

Dans le contexte de la recherche de procédés moins polluants et plus économes en énergie que les procédés actuels, il est intéressant de produire des molécules à fort enjeu telles que par exemple C2H4 en développant des voies de synthèses alternatives au vapocraquage, majoritairement employé, mais coûteux en énergie et à base de ressources fossiles. Les procédés tels que la photocatalyse, qui repose sur l’utilisation de l’énergie lumineuse, paraissent alors séduisants pour générer ces molécules d’intérêt. Dans ce cadre, nous avons déjà montré que l’utilisation de photocatalyseurs à base de TiO2 décoré par des particules de cuivre permettait la production d’éthylène à partir d’une solution aqueuse d’acide propionique, le tout avec une sélectivité (C2H4/autres produits carbonés) allant jusqu’à 85%.

Cependant, les cinétiques de photocatalyse peuvent être lentes et il peut être long d’identifier les meilleurs catalyseurs ou les meilleurs couples « catalyseurs/réactifs » pour une réaction donnée. Ainsi, dans le but de déterminer si la radiolyse, qui repose sur l’utilisation du rayonnement pour ioniser la matière, peut être une méthode efficace de criblage de catalyseurs, des premières expériences ont déjà été réalisées sur les couples catalyseurs (TiO2 ou CuTiO2)/réactifs (acide propionique plus ou moins concentré), préalablement étudiés en photocatalyse. Les premiers résultats obtenus par radiolyse sont encourageants. Dans ces expériences, seule la production de dihydrogène a été mesurée. Une différence significative a été observée dans cette production selon les systèmes : elle est importante lors de la radiolyse d’acide propionique avec des nanoparticules de TiO2, et sensiblement plus faible en présence des nanoparticules CuTiO2, ce qui suggère un chemin réactionnel différent dans ce dernier cas, en accord avec les observations réalisées lors des expériences de photocatalyse.

Le but de ce travail de thèse consistera à approfondir ces premiers résultats en synthétisant des nanoparticules (catalyseurs), en préparant des mélanges réactifs/catalyseurs puis en les irradiant et en mesurant les différents gaz produits par micro-chromatographie en phase gazeuse, en se concentrant d’abord sur l’éthylène. Un soin particulier sera accordé à la détermination d’espèces formées, notamment transitoires, afin de proposer in fine des mécanismes de réaction rendant compte des différences observées pour les différents couples réactifs/catalyseurs. Des comparaisons avec des résultats obtenus par photocatalyse seront également effectuées.
La terre crue, un matériau millénaire aux nouvelles utilisations émergentes

SL-DRF-24-0360

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Jean-Philippe RENAULT

Diane REBISCOUL

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Directeur de thèse :

Diane REBISCOUL
CEA - DES/ICSM (DES)//L2ME

0033 4 66 33 93 30

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

Voir aussi : https://www.icsm.fr/index.php?pagendx=3898

Les matériaux en terre crue, qui ont trouvé de multiples utilisations depuis des millénaires, offrent aujourd'hui un potentiel considérable en matière d'adaptation au changement climatique, grâce à leurs capacités naturelles de régulation thermique et hydrique ainsi que leurs production et façonnement à faibles émissions de CO2. Toutefois, des avancées scientifiques restent nécessaires pour une compréhension plus fine de ces matériaux, à l'échelle nanométrique.

Cette thèse se concentre sur le lien entre les propriétés mécaniques des matériaux en terre crue et leur nanostructure en mettant l’accent sur les rôles de l'eau confinée, des ions et des substances organiques. Deux approches, basées sur l’expertise sur les milieux nanoporeux développée au CEA, à Saclay et à Marcoule, seront suivies : l'analyse de matériaux anciens par des méthodes de spectroscopie et de diffusion de rayonnement ainsi que la mise au point d'un protocole de criblage permettant d’identifier les paramètres physicochimiques importants pour la durabilité. Ces recherches, qui visent à terme à optimiser les formulations de matériaux en terre crue, seront menées en collaboration avec des architectes spécialistes du domaine.
Métamatériaux multiéchelles à base de composites polymères biosourcés 3D-imprimés

SL-DRF-24-0326

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Valérie GEERTSEN

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Directeur de thèse :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Page perso : https://iramis.cea.fr/Pisp/valerie.geertsen/

Labo : https://iramis.cea.fr/nimbe/lions/

La réduction de la densité des matériaux est une des voies privilégiées pour réduire notre empreinte énergétique. Une des solutions consiste à remplacer les matériaux massifs par des microtreillis. Parmi ceux-ci, les structures d’architecture aléatoire inspirées de la structure osseuse possèdent les meilleurs atouts avec un comportement mécanique isotrope et une tenue mécanique accrues tout en répondant aux enjeux de l’économie circulaire et à l'adaptation au changement climatique. Peu consommateurs de matière, ces métamatériaux sont fabriqués par impression 3D et peuvent être compactés en fin de vie. Parmi toutes les technologies de fabrication, l’impression par polymérisation UV de résine liquide organique ou de composite est la plus prometteuse. Elle permet d’obtenir des matériaux résistants mécaniquement, sans générer de déchet de fabrication. Il est en outre possible d’y inclure de forte quantité de charge biosourcées réduisant encore leur impact environnemental.

La thèse proposée ici consiste à mettre au point l’impression de structures en microtreillis composites, depuis la formulation de la résine composite jusqu’à l’étude des propriétés mécaniques (viscoélasticité, limite élastique et résistance à la rupture) en passant par l’étape d’impression et de post-traitement. D’un point de vue plus fondamental, il s’agira d’étudier le lien entre la composition, la forme et les propriétés de surface des charges d’une part, et les propriétés d’imprimabilité de la résine et la réponse mécanique du métamatériau résultant d’autre part. La thèse se focalisera sur l’étude de charge de type cellulose sous forme de nanoparticule, microparticule ou fibre.
Par cette étude multidisciplinaire allant de la molécule chimique à la physique statistique, il s’agira de faire le lien entre la science et la technologie et créer les données de base à un jumeau numérique. Ceci permettra de mieux appréhender l’ensemble des processus et fournira des données de base sur les propriétés d’élasticité et résistance à la rupture qui serviront de socle à la modélisation numérique pour la génération accélérée de nouveaux matériaux.
Synthèse de nanoparticules de diamant à façon pour la production d’hydrogène par photocatalyse

SL-DRF-24-0432

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Jean-Charles ARNAULT

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

Nos résultats récents montrent que le nanodiamant peut agir comme un photocatalyseur, permettant la production d’hydrogène sous illumination solaire [1]. Malgré sa large bande interdite, sa structure de bande est adaptable selon sa nature et sa chimie de surface [2]. De plus, l’incorporation contrôlée de dopants ou de carbone sp2 conduit à générer des états supplémentaires dans la bande interdite qui augmentent l’absorption de la lumière visible comme le montre une étude récente associant notre groupe [3]. Les performances photocatalytiques des nanodiamants sont très dépendantes de leur taille, de leur forme et de leur concentration en impuretés chimiques. Il donc est essentiel de mettre au point une méthode de synthèse de nanodiamants "à façon" dans laquelle ces différents paramètres pourraient être finement contrôlés, afin de disposer d’une filière de nanodiamants "contrôlés" qui fait actuellement défaut.

Ce sujet de thèse vise à développer la synthèse de nanodiamants par une approche bottom-up utilisant un template sacrificiel (billes ou fibres de silice) sur lequel des germes de diamant < 10 nm seront fixés par interaction électrostatique. La croissance des nanoparticules de diamant à partir de ces germes sera réalisée en exposant ces objets à un plasma de croissance de dépôt chimique en phase vapeur activé par micro-ondes (MPCVD), ce qui permettra de contrôler très finement (i) l’incorporation d’impuretés dans le matériau (ii) sa qualité cristalline (rapport sp2/sp3) (iii) sa taille. Ce dispositif de croissance, qui existe au CEA NIMBE, est utilisé pour la synthèse de cœur-coquilles de diamant dopé au bore [4]. Dans la seconde partie de la thèse, un procédé innovant (demande de brevet en cours) sera mis en œuvre pour réaliser la croissance MPCVD des nanoparticules de diamant en faisant circuler les templates sacrificiels dans un flux gazeux. Au cours de cette thèse, plusieurs types de nanodiamants seront synthétisés : des nanoparticules intrinsèques (sans dopage intentionnel) et des nanoparticules dopées au bore ou à l’azote.

Après croissance, les nanoparticules seront collectées après dissolution du template. Leur structure cristalline, leur morphologie et leur chimie de surface seront étudiées au CEA NIMBE. Une analyse fine de la structure cristallographique et des défauts structuraux sera réalisée par microscopie électronique en transmission à haute résolution.

Les nanodiamants seront ensuite modifiés en surface pour leur conférer une stabilité colloïdale dans l’eau. Leurs performances photocatalytiques pour la production d’hydrogène seront mesurées en collaboration avec l’ICPEES de Strasbourg.

Références
[1] Patent, Procédé de production de dihydrogène utilisant des nanodiamants comme photocatalyseurs, CEA/CNRS, N° FR/40698, juillet 2022.
[2] Miliaieva et al., Nanoscale Adv. 2023.
[3] Buchner et al., Nanoscale (2022)
[4] Henni et al., Diam. Relat. mater. (under review)

 

Retour en haut