CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact | English

Les sujets de thèses

7 sujets IRAMIS

Dernière mise à jour : 19-04-2018


««

• Matière molle et fluides complexes

 

"Machine learning" de modèles de suspensions hydrodynamiques de micro-nageurs par apprentissage de grandes masses de données expérimentales

SL-DRF-18-0902

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Hugues CHATE

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Hugues CHATE

CEA - DSM/IRAMIS/SPEC/SPHYNX

0169087535

Directeur de thèse :

Hugues CHATE

CEA - DSM/IRAMIS/SPEC/SPHYNX

0169087535

Labo : http://iramis.cea.fr/spec/SPHYNX/

Ces dix dernières années ont vu l'émergence d'études sur la "matière active" - composée de particules qui transforment l'énergie d'une source ambiante en mouvement - comme un sujet bien défini de physique statistique hors équilibre, principalement motivé par la nécessité de comprendre et reproduire le lien entre la motilité individuelle et collective. Les expériences sont encore relativement peu nombreuses, mais avec l'émergence du domaine, de plus en plus de données statistiques obtenues dans des conditions bien contrôlées deviennent disponibles. Ces grandes masses de données ("big data") ouvrent la possibilité non seulement de tester la pertinence quantitative de modèles existants, mais aussi de concevoir et d'appliquer des algorithmes d'apprentissage (machine learning) pour "découvrir" spontanément des modèles quantitativement fidèles. Ainsi on pourra atteindre un des objectifs finaux qui est d'obtenir explicitement les relations entre les paramètres de contrôle expérimentaux et les paramètres du modèle. Si la tâche semble difficile, elle est de première importance, car les modèles, en particulier les modèles continus, contiennent généralement de nombreux paramètres de sorte que cette correspondance n'est pas biunivoque.



Au cours de cette thèse, des données expérimentales à haut débit sur les suspensions bactériennes ("big data", provenant de collaborateurs à Shanghai et à Hong Kong) seront utilisées pour construire des modèles quantitatifs et élaborer des théories de synthèse.



Le travail de doctorat consistera à suivre en parallèle deux voies pour construire des liens théorie-expérience quantitatifs et directs. La première méthode, plus usuelle et déjà amorcée au laboratoire, consiste à construire des modèles par l'optimisation multidimensionnelle d'un ensemble de quantificateurs de cibles. La seconde, plus exploratoire et innovante, et donc plus difficile et risquée, consiste à construire "automatiquement" les modèles par des algorithmes d'apprentissage sur les données expérimentales. La comparaison des résultats obtenus par les deux voies sera particulièrement intéressante.



Les travaux analytiques nécessaires pour dériver des théories cinétiques et hydrodynamiques à partir des modèles simples de nageurs interactifs ainsi obtenus, y compris les termes stochastiques, seront développés en parallèle.

Dissipation, cascades et singularités en turbulence

SL-DRF-18-0272

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Bérengère DUBRULLE

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Directeur de thèse :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Page perso : http://iramis.cea.fr/Pisp/berengere.dubrulle/index.html

Labo : http://iramis.cea.fr/spec/sphynx/

La turbulence est un état atteint par la majeure partie des fluides dans des conditions “extrêmes” -fortes vitesses ou températures, grande taille du système-. Elle se manifeste dans de nombreux domaines industriels (turbines), aéronautiques (avions, fusées), géophysiques (atmosphère, océan) ou astrophysiques (étoiles, galaxies). Comprendre les phénomènes de turbulence constitue donc un enjeu scientifique, technologique et économique important. Soumis à une agitation mécanique, un fluide visqueux convertit le travail appliqué en chaleur via un processus complexe: son écoulement se structure en mouvements tourbillonnaires qui se ramifient sur plusieurs échelles allant de la taille du système (océan, lac, récipient,…) à l'échelle la plus fine, fonction de la viscosité. L’énergie injectée dans le fluide est finalement dissipée par effet de viscosité. Depuis près de 80 ans, on décrit ce processus par un modèle de cascade auto-similaire, du à Kolmogorov. Ce modèle sert de base à presque tous les modèles actuels de turbulence, et permet de reproduire extrêmement bien la majeure partie des grandes échelles des écoulements turbulents. Cependant, ce modèle devient de plus en plus mauvais au fur et à mesure que l'on descend vers les petites échelles, et ne permet pas de comprendre le comportement très intermittent de la dissipation d'énergie. Cela limite considérablement la modélisation des processus impliquant la turbulence à petite échelle, comme la combustion (problème pour simuler les moteurs) ou la condensation de gouttes (problème pour simuler la pluie en météo ou en climat).



Le but de la thèse est de tester une nouvelle description de la cascade d'énergie, basée sur l'hypothèse que la turbulence contient des singularités dans la limite de la viscosité tendant vers zéro. La quête des singularités dans les équations d’Euler ou de Navier-stokes représente un problème bien connu (cf. AMS Millenium Clay Prize), mais les récentes avancées, tant au niveau numérique qu’expérimental, remettent ce problème de nouveau d’actualité. En particulier, notre groupe a récemment mis en évidence, dans un écoulement turbulent de laboratoire, l'existence d'événements intenses de dissipation d'énergie non-visqueuse qui pourraient être associés aux singularités recherchées par les mathématiciens (Saw et al, Nature Communication 7, 12466 (2016)). Ces évènements ne sont pas décrits par le modèle de Kolmogorov, et pourraient servir de base à de nouvelles modélisations plus fidèles à petite échelle.



Nous proposons dans cette thèse une étude détaillée des processus de cascade et de dissipation d'énergie en utilisant le code SFEMaNS, qui sera testé par comparaisons avec les mesures expérimentales. Ce code utilise des éléments finis et une décomposition spectrale ainsi que des méthodes avancées de pénalisation, pour reproduire fidèlement l'expérience de laboratoire utilisée au SPEC.

Effets thermoélectriques dans les liquides ioniques et nanofluides

SL-DRF-18-0370

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Page perso : http://iramis.cea.fr/Pisp/sawako.nakamae/

Labo : http://iramis.cea.fr/spec/SPHYNX

Voir aussi : https://www.magenta-h2020.eu

Aujourd’hui, une grande part de l’énergie utilisée dans les processus industriels, entre 20 et 50%, est inutilement perdue en "chaleur fatale" sans être réutilisée. Jusqu’à 60-70% de l’énergie dans les moteurs à combustion interne est tout simplement relâchée dans l’atmosphère. Dans ce contexte, la récupération et la transformation en énergie électrique ou mécanique d’une partie de la chaleur fatale représente un enjeu important pour réduire la consommation globale.



Lorsqu'on chauffe un barreau conducteur à une extrémité, les électrons acquièrent de l'énergie cinétique et diffusent vers la partie froide. Les ions positifs par contre restent immobiles et il en résulte un déséquilibre de charge d'où l'apparition d'un champ électrique et d'un potentiel électrique dV proportionnel à la différence de température dT : dV=-SdT. Le facteur de proportionnalité S est appelé "coefficient Seebeck". Ceci fournit un schéma de principe à la conversion d'énergie thermique en énergie électrique (effet Seebeck) ou réciproquement (effet Peltier). Dans les deux cas, le rendement est une fonction croissante du "facteur de mérite" ZT=(S^2/Rho*Lambda)T où Rho et Lambda désignent respectivement les conductivités électrique et thermique du matériau. L'effet thermoélectrique dans des liquides conducteurs tels que les liquides ioniques, les solutions colloïdales chargées, etc., font l'objet de nombreuses études à cause de leur coefficient Seebeck très élevé. L’origine de la valeur élevée du coefficient Seebeck n’est pas encore complètement comprise. De possibles interprétations sont que le coefficient Seebeck croît avec l'entropie transportée par les ions et par les particules colloïdales chargées et que les macro-ions ou particules colloïdales chargées sont adsorbées à la surface des électrodes en créant un effet de double couche électrique (très élevé, à enlever).



Dans cette thèse, nous proposons l'étude expérimentale des propriétés thermoélectriques de fluides complexes (e.g., liquides ioniques, nanofluides (solutions colloïdales de nanoparticules chargées) afin de faire progresser notre compréhension sur l’origine physique de ce phénomène et d’identifier les nouveaux matériaux thermoélectriques dans le domaine du stockage de l'énergie (générateur thermoélectrique et supercondensateurs.). Le travail expérimental fera appel aux techniques de mesure du transport thermoélectrique et électrique, à la mesure de la charge thermoélectrique, à la caractérisation électrochimique (voltamétrie cyclique) ainsi que à l'acquisition automatisée des données et à l’interprétation des mesures.

Etude biophysique de la dynamique de la conformation de la chromatine au cours de la réplication du génome

SL-DRF-18-0276

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Frédéric GOBEAUX

Patrick GUENOUN

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Frédéric GOBEAUX

CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 24 74

Directeur de thèse :

Patrick GUENOUN

CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-74-33

Page perso : http://iramis.cea.fr/Pisp/frederic.gobeaux/

Labo : http://iramis.cea.fr/nimbe/lions/

L’organisation tridimensionnelle du génome et sa dynamique dans des cellules vivantes sont déterminantes pour ses fonctions. Il est crucial de les comprendre et d’identifier les paramètres qui la contrôlent. L’état de l’art actuel permet d’appréhender l’organisation à courte portée (<10 nm) et à longue portée (>250 nm) de la chromatine dans le noyau. Cependant, il existe une zone intermédiaire (10-250 nm) où l’organisation spatiale de la chromatine est mal identifiée. Cette zone correspond précisément à la taille des complexes protéiques qui modifient la chromatine pour permettre la duplication du génome.



Nous étudierons par diffusion des rayons X des cultures cellulaires au cours de la duplication du génome. Grâce à un montage expérimental adapté nous mesurerons la dynamique de la conformation de la chromatine lors de la duplication du génome et compléterons cette analyse par des simulations numériques (dynamique moléculaire) afin de corréler la dynamique de la chromatine avec celle de la duplication du génome. Nous étudierons différents types cellulaires pour tester la généralité de nos observations.



Ce projet est en collaboration entre une équipe de physique et une équipe de biologie et comportera pour l'étudiant des aspects des deux disciplines.

Mesures optiques de la dissipation et des flux d’énergie dans des écoulements turbulents

SL-DRF-18-0872

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sébastien AUMAÎTRE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Sébastien AUMAÎTRE

CEA - DRF/IRAMIS/SPEC/SPHYNX

01 69 08 74 37

Directeur de thèse :

Sébastien AUMAÎTRE

CEA - DRF/IRAMIS/SPEC/SPHYNX

01 69 08 74 37

Page perso : http://iramis.cea.fr/Pisp/sebastien.aumaitre/

Labo : http://iramis.cea.fr/spec/sphynx/

L'objectif de cette thèse est d'étudier les fluctuations de puissances dans les écoulements turbulents. Les approches classiques ont déjà montré que la stationnarité des écoulements turbulents, qui impose l'égalité des puissances moyennes injectées à grande échelle et dissipée aux petites échelles, contraint le spectre des vitesses. Mais pour aller au-delà et expliquer la complexité et l'intermittence des écoulements turbulents, on peut s'intéresser aux propriétés statistiques des fluctuations des puissances mises en jeu dans les écoulements. Notamment on peut espérer mettre en évidence les corrélations entre puissance injectée et dissipée qu'impose la stationnarité et explorer leurs conséquences sur la structure de l’écoulement. Le défi expérimental sera d'estimer les fluctuations de puissance dissipée car cela nécessite une mesure fine des gradients de vitesse sur tout le volume de l'écoulement. Pour y parvenir, nous souhaiterions développer des mesures optiques de diffusion multiple couplées à l'acquisition d'image ultra-rapide. On complètera cette méthode innovante avec des mesures plus classiques afin de mesurer simultanément la puissance injectée et de chartériser la structure de l'écoulement.

Métamateriaux auto-assemblés à base de copolymères à blocs

SL-DRF-18-0245

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Patrick GUENOUN

Virginie PONSINET

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Patrick GUENOUN

CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-74-33

Directeur de thèse :

Virginie PONSINET

CNRS - Centre de Recherche Paul Pascal (CRPP)

+33(0)5 56 84 56 25

Page perso : http://iramis.cea.fr/Pisp/patrick.guenoun/index.html

Labo : http://iramis.cea.fr/nimbe/lions/

Les métamatériaux sont des matériaux "artificiels" qui sont créés pour atteindre des propriétés inaccessibles aux matériaux homogènes naturels. Ainsi en est-il de propriétés optiques comme des indices de réfraction négatifs qui peuvent être atteints par une structuration des métamatériaux à une échelle inférieure à celle de la longueur d’onde de la lumière. Dans ce travail de thèse, nous atteindrons une telle structuration (nanostructuration) en combinant l’auto-assemblage de copolymères sur des surfaces et l’insertion dans cet auto-assemblage de nanoparticules d’or. La matrice de copolymères fournit la nanostructuration à l’échelle et la géométrie voulue tandis que la présence d’or confère les propriétés optiques attendues. Cette thèse en collaboration entre le LIONS au CEA Saclay et le Centre de recherche Paul Pascal à Bordeaux bénéficiera des deux environnements pour mener une étude expérimentale qui consistera à préparer des surfaces, où des phases cylindriques ou bicontinues de copolymères seront orientées perpendiculairement au substrat. Après synthèse au laboratoire et insertion des nanoparticules d’or dans les structures, les propriétés optiques du matériau obtenu seront mesurées et analysées en vue de les modéliser.

Synthèse et intégration de matériaux dans des capteurs pour la surveillance de la qualité de l'eau

SL-DRF-18-0286

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Jean-Christophe GABRIEL

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Jean-Christophe GABRIEL

CEA - DRF/IRAMIS/NIMBE/LICSEN

0438780257

Directeur de thèse :

Jean-Christophe GABRIEL

CEA - DRF/IRAMIS/NIMBE/LICSEN

0438780257

Page perso : http://inac.cea.fr/Phocea/Pisp/index.php?nom=jean-christophe.gabriel

Labo : http://iramis.cea.fr/nimbe/licsen/

Voir aussi : https://www.linkedin.com/in/jcpgabriel

Ce sujet se situe dans le contexte d'un des deux seuls projets financés par l'ANR en 2017 sur la thématique des Capteurs pour l'environnement (projet 4WATER). La crise de l'eau constitue le risque n°1 quant à son impact sur la société d'après le « Forum de l'économie mondiale » (01/2015). Dans le projet 4WATER, nous proposons l'élaboration de nouveaux capteurs matriciels à bas coût et multi-cibles. Ces capteurs seront intégrés, à l'aide d'une approche microélectronique, sous forme de transistors MOSFETs sensibles à différents ions choisis en fonction de leur pertinence vis-à-vis de la potabilité de l'eau. Nous proposons ainsi à terme une solution de surveillance multianalytes permanente et peu onéreuse des ressources en eau douce de surface.



Lors de sa thèse, l'étudiant(e) aura à synthétiser des matériaux par diverses techniques de synthèses issues de la chimie et devra les mettre en solution (formulation d’encres). S’en suivra une intégration de ces composés dans des dispositifs actifs (capteurs pour la qualité de l’eau) ainsi que de tester des capteurs ainsi formés. Selon le temps restant et le dynamisme de l’étudiant(e), Il s’agira aussi d’étudier les propriétés physico-chimiques (structure, taille etc…) des fluides complexes obtenus ou alors il se fera en collaboration avec un collaborateur du projet. L’étudiant(e) sera exposé à un environnement pluridisciplinaire et amené(e) à réaliser des expériences dans des domaines variés tels que la chimie inorganique, la physico-chimie, la micro/nano-fabrication en salles blanches, les méthodes de nano-caractérisation et de tests électriques/électroniques. Cette thèse est donc une excellente opportunité de croissance professionnelle tant d'un point de vue des connaissances, que du savoir-faire et de la notoriété acquise dans la communauté scientifique, et offre d’autre part de bonnes perspectives via la collaboration industrielle entrant dans ce projet.

 

Retour en haut