CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact | English

Les sujets de thèses

5 sujets IRAMIS

Dernière mise à jour : 19-04-2018


««

• Interactions rayonnement-matière

 

Effets d’ionisation en couche interne sur des molécules d’intérêt biologique en milieu aqueux

SL-DRF-18-0325

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Jean-Philippe RENAULT

Marie-Anne Hervé du Penhoat

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Jean-Philippe RENAULT

CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Directeur de thèse :

Marie-Anne Hervé du Penhoat

UPMC - IMPMC

+33 1 44 27 72 05

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : http://iramis.cea.fr/nimbe/lions/

Le but de cette thèse est de mieux comprendre l’impact physicochimique des ionisations en couche interne sur les molécules d’intérêt biologique. Ces évènements extrêmes, injectant des centaines d’électrons volt sur des échelles atomiques, pourraient en effet jouer un rôle majeur en radiobiologie.



Cette thèse sera conduite dans le cadre d’une collaboration entre le CEA Saclay et le synchrotron SOLEIL. Elle abordera d'une part des développements spectroscopiques pour suivre des changements structuraux dans les biomolécules ionisées et d'autre part la mise en place des irradiations avec des rayonnements X mous sur les lignes METROLOGIES et PLEIADES. Un volet simulation par dynamique moléculaire ab initio pourra de plus être développé en collaboration avec l’Université Pierre et Marie Curie.

Etude par radiolyse des processus de vieillissement dans les batteries lithium-ion

SL-DRF-18-0424

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Sophie LE CAER

CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Directeur de thèse :

Sophie LE CAER

CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : iramis.cea.fr/Pisp/sophie.le-caer

Labo : http://iramis.cea.fr/nimbe/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=50

Les questions de vieillissement et de sécurité constituent un défi majeur dans le domaine des batteries lithium-ion. Récemment et pour la première fois, nous avons montré que la radiolyse (i.e. la réactivité induite par l'interaction entre les rayonnements ionisants et la matière) est un outil puissant pour l'identification rapide (minutes, jours) des produits formés lors de la dégradation de l'électrolyte d'une batterie lithium-ion après plusieurs semaines, voire plusieurs mois de cyclage. L'objectif de ce travail de thèse est d'étendre l'approche radiolyse :

* au criblage d'électrolytes et de combinaisons électrolytes/matériaux pour identifier les plus robustes. Les mécanismes réactionnels induits par les rayonnements ionisants seront étudiés en détails dans le cas des électrolytes les plus prometteurs;

* à l'étude détaillée des processus interfaciaux (électrode/électrolyte) pour des électrodes positives et négatives dans le cas des systèmes les plus intéressants précédemment identifiés.



Une vision globale et détaillée des mécanismes à l'œuvre dans les batteries lithium-ion en fonctionnement sera donc obtenue et les systèmes les plus résistants au rayonnement, donc à l'électrolyse, seront identifiés et étudiés.

Impulsions XUV attosecondes portant un moment angulaire : synthèse et nouvelles spectroscopies

SL-DRF-18-0221

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Thierry RUCHON

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Thierry RUCHON

CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Directeur de thèse :

Thierry RUCHON

CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Page perso : http://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/

Labo : http://iramis.cea.fr/LIDYL/ATTO/

La lumière dans l’extrême ultraviolet (XUV) constitue une sonde universelle de la matière, qu’elle se présente en phase diluée ou condensée : les photons associés à cette gamme spectrale portent une énergie de 10 à 100 eV, suffisante pour ioniser directement atomes, molécules ou objets solides. De grands instruments tels les synchrotrons ou les lasers à électrons libres (LEL) fonctionnent dans cette gamme spectrale et permettent d’étudier, tant du point de vue fondamental qu’appliqué, les interactions lumière-matière dans ce régime. Cependant, ces grands instruments n’offrent pas la résolution temporelle permettant d’atteindre les échelles de temps ultimes des interactions lumière-matière, situées dans la gamme attoseconde (1as=10^-18s). Une alternative est offerte par le développement, ces dernières années, de sources XUV basées sur la génération d’harmoniques d’ordre élevé (HHG) d’un laser femtoseconde intense. Notre laboratoire a été pionnier pour le développement, le contrôle et la mise en forme de ces sources fournissant des impulsions XUV attosecondes.



Au cours de cette thèse, nous développerons des dispositifs spécifiques faisant porter à ces impulsions un moment angulaire, qu’il soit de spin ou orbital. Ceci ouvrira de nouvelles applications mettant en jeu des spectroscopies résolues en temps ignorées à ce jour. L’accent sera mis, d’une part sur les aspects fondamentaux des couplages de moment angulaires de spin et orbitaux de la lumière dans le régime hautement non linéaire, d’autre part sur des applications de physique attoseconde, en phase diluée ou condensée. En particulier, nous chercherons à mettre en évidence des dichroïsmes hélicoïdaux, qui se manifestent par des absorptions différentes de faisceaux portant des moments angulaires orbitaux opposés. Ces effets restent très largement ignorés à ce jour.



L’étudiant(e) acquerra une pratique de l’optique des lasers, en particulier femtoseconde, et des techniques de spectrométrie de particules chargées. Il (elle) étudiera également les processus de physique des champs forts sur lesquels se basent la génération d'harmoniques élevées. Il/elle deviendra un(e) experte de la physique attoseconde. L’acquisition de techniques d’analyse approfondie, d’interfaçage d’expérience seront encouragées même si non indispensables.



Sujet complet disponible à http://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/.

Impulsions attosecondes accordables pour l’étude des dynamiques de photo-ionisation

SL-DRF-18-0844

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Pascal SALIERES

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Pascal SALIERES

CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Directeur de thèse :

Pascal SALIERES

CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Page perso : http://iramis.cea.fr/Pisp/pascal.salieres/

Labo : http://iramis.cea.fr/LIDYL/ATTO/

Voir aussi : http://attolab.fr/

Résumé :



A l’aide d’impulsions attosecondes accordables produites avec un amplificateur paramétrique optique (OPA) pompé par un laser Titane:Saphir intense (Equipement d’Excellence ATTOLab), l’étudiant(e) étudiera la dynamique d’ionisation de gaz atomiques et moléculaires près des résonances. L’objectif est de suivre en temps réel l'éjection des électrons et de mesurer comment se construit le profil des résonances.



Sujet détaillé :



Ces dernières années, la génération d’impulsions sub-femtosecondes, dites attosecondes (1 as=10-18 s), a connu des progrès spectaculaires. Ces impulsions ultrabrèves ouvrent de nouvelles perspectives d’exploration de la matière à une échelle de temps jusqu’alors inaccessible. Leur génération repose sur la forte interaction non linéaire d’impulsions laser infrarouges (IR) brèves (~20 femtosecondes) et intenses avec des gaz atomiques ou moléculaires. On produit ainsi les harmoniques d’ordre élevé de la fréquence fondamentale, sur une large gamme spectrale (160-10 nm) couvrant l’extrême ultraviolet (UVX). Dans le domaine temporel, ce rayonnement cohérent se présente comme un train d’impulsions d’une durée de ~100 attosecondes [1].



Avec ces impulsions attosecondes, il devient possible d’étudier les dynamiques les plus rapides dans la matière, celles associées aux électrons, qui se déroulent naturellement à cette échelle de temps. La spectroscopie attoseconde permet ainsi l’étude de processus fondamentaux tels que la photo-ionisation et s’intéresse à la question : combien de temps faut-il pour arracher un électron à un atome ou une molécule ’ Plus précisément : combien de temps faut-il à un paquet d’onde électronique produit par absorption d’une impulsion attoseconde pour sortir du potentiel atomique/moléculaire ’ La mesure de ces délais d’ionisation est actuellement un sujet « chaud » dans la communauté scientifique. En particulier, l’étude de la dynamique d’ionisation près des résonances permettrait d’accéder à des informations très fines sur la structure atomique/moléculaire, telles que les réarrangements électroniques dans l’ion suite à l’éjection d’un électron. Nous nous sommes récemment intéressés à l’ionisation près d’une résonance d’auto-ionisation dite « de Fano ». Nous avons montré par ionisation à 2 photons UVX+IR qu’il était possible de « voir » en temps réel la construction du profil de la résonance [2].



L’objectif de la thèse est de généraliser cette technique pour étudier d’autres types de résonances atomiques et moléculaires, telles que les résonances de forme. A cette fin, des impulsions attosecondes accordables seront générées à l’aide du rayonnement moyen-IR [1.2-2 µm] produit avec un amplificateur paramétrique optique (OPA) pompé par un laser Titane:Saphir intense. Enfin, la mesure de la distribution angulaire des électrons émis, combinée à l’information temporelle détaillée ci-dessus, permettra de reconstruire le film complet 3D de l’éjection des électrons.

Le travail expérimental comprendra la mise en œuvre d’un dispositif, installé sur le laser FAB1 d’ATTOLAB, permettant : i) la génération de rayonnement attoseconde ; ii) sa caractérisation par interférométrie quantique ; iii) son utilisation en spectroscopie de photoionisation (détection d’électrons). Les aspects théoriques seront également développés. L’étudiant(e) sera formé(e) en optique ultrarapide, physique atomique et moléculaire, chimie quantique, et acquerra une large maitrise des techniques de spectroscopie de particules chargées. Des connaissances en optique, optique non linéaire, physique atomique et moléculaire, sont une base requise.

Le travail de thèse donnera lieu à des campagnes d’expériences dans des laboratoires français (ANR CIMBAAD) et européens associés (réseau européen MEDEA : Milan, Lund).



Références :

[1] Y. Mairesse, et al., Science 302, 1540 (2003)

[2] V. Gruson, et al., Science 354, 734 (2016)

Miroirs plasmas 'in silico': "vers l'obtention de sources lumineuses d'intensités extrêmes et d'accélérateurs de particules ultra-compacts"

SL-DRF-18-0432

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Henri VINCENTI

Guy BONNAUD

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Henri VINCENTI

CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Directeur de thèse :

Guy BONNAUD

CEA - DRF/IRAMIS/LIDyL/PHI

0169088140

Page perso : http://iramis.cea.fr/Pisp/henri.vincenti/

Labo : http://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.picsar.net

Avec l’avènement des lasers de puissance de classe PW, capables de délivrer des intensités lumineuses de 10^22 W.cm^-2 pour lesquelles la matière devient plasma, la physique des Ultra-Hautes Intensités (UHI) vise maintenant à résoudre deux challenges majeurs : peut-on produire des accélérateurs de particules compacts délivrant des faisceaux d’électrons de haute charge à haute énergie, qui seront cruciaux pour repousser les limites de la Science des hautes énergies ’ Peut-on atteindre des intensités lumineuses extrêmes, approchant la limite de Schwinger (10^29W.cm^-2), au-delà de laquelle la lumière s’autofocalise dans le vide et des paires électron/positron sont produites’ Résoudre ces deux grandes questions à l’aide des lasers de puissance PW en construction (e.g. CILEX/APOLLON, ELI) requiert une rupture conceptuelle que je propose de développer au cours de cette thèse.



En particulier, cette thèse vise à démontrer que les ‘miroirs plasma relativistes’, produits lorsqu’un laser femtoseconde (1fs=10^-15s) de puissance frappe une cible solide, pourraient fournir une approche simple et élégante permettant de résoudre ces deux grands challenges de la physique UHI. Lors de sa réflexion sur le miroir plasma, le laser peut générer des paquets d’électrons relativistes de haute charge ainsi que des faisceaux harmoniques de courtes longueurs d’onde très intenses. Pourrait-on utiliser ces miroirs plasmas pour focaliser fortement les faisceaux harmoniques et approcher la limite de Schwinger ’ Pourrait-on utiliser les miroirs plasmas comme des injecteurs de très haute charge dans un laser PW capable de fournir des gradients accélérateurs de 100TV.m^-1 ’



La mission du candidat sera de répondre à ces deux interrogations ‘in silico’, à l’aide de simulations numériques massivement parallèles nécessitant les plus gros calculateurs disponibles à l’heure actuelle. Dans cette optique, le candidat utilisera nos derniers développements numériques et d’optimisation de la méthode Particle-In-Cell (PIC) qui rendent possible, pour la première fois, une simulation 3D réaliste de l’interaction laser-miroir plasma à haute intensité. Ces développements ont été implémentés, validés et testés dans notre code 3D PICSAR (https://www.picsar.net). Armé de PICSAR, le candidat modélisera numériquement de nouveaux schémas d’interaction utilisant les miroirs plasmas pour résoudre les deux grands challenges physiques introduits ci-dessus.

 

Retour en haut