| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les sujets de thèses

5 sujets /NIMBE/LIONS

Dernière mise à jour :


• Biotechnologies, nanobiologie

• Interactions rayonnement-matière

• Matière ultra-divisée, physico-chimie des matériaux

• Technologies pour la santé et l’environnement, dispositifs médicaux

 

Simulation des nano-objets en milieu biologique

SL-DRF-24-0362

Domaine de recherche : Biotechnologies, nanobiologie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Yves BOULARD

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Yves BOULARD
CEA - DRF/JOLIOT/I2BC/

+33 169083584

Directeur de thèse :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

La compréhension des interactions non spécifiques ou spécifiques entre les biomolécules et les nanomatériaux est la clé du développement de nanomédicaments et de nanoparticules sûres. En effet, l'adsorption des biomolécules est le premier processus qui se produit après l'introduction de biomatériaux dans le corps humain ce qui contrôle leur réponse biologique. Dans le cadre de cette thèse, nous entreprendrons la simulation de l'interface nanosystème-biomolécules à l’échelle de la centaine de nanomètres en utilisant les nouveaux moyens de calcul exascale disponibles au CEA à partir de 2025 (machine Jules Verne installée au CCRT).
nanoréacteurs tubulaires durables à polarisation radiale pour la catalyse

SL-DRF-24-0284

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Pierre PICOT

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Pierre PICOT
CEA - DRF/IRAMIS/NIMBE/LIONS/


Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=ppicot

Labo : https://iramis.cea.fr/NIMBE/LIONS/

Les exigences combinées liées à l'augmentation de la production d'énergie et à la nécessité de réduire les combustibles fossiles pour limiter le réchauffement de la planète ont ouvert la voie à un besoin urgent pour des technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifique et accessibles élevées, environnements confinés, meilleure séparation des charges). L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Bien qu'elle ne soit pas directement photoactive dans le domaine de la lumière visible (bande interdite élevée), elle présente une polarisation permanente de sa paroi en raison de sa courbure intrinsèque. Cette propriété fait d'elle un co-photocatalyseur potentiellement utile pour la séparation des charges. De plus, ce nanotube appartient à une famille partageant la même structure locale avec différentes morphologies courbées (nanosphère et nanotuile). En outre, plusieurs modifications de ces matériaux sont possibles (dopage de la paroi avec des métaux, couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet d'ajuster la bande interdite. Pour l'instant, la preuve de concept (c'est-à-dire le nanoréacteur pour des réactions photocatalytiques) n'a été obtenue que pour la forme nanotube.

L'objectif de cette thèse est ainsi d'étudier toute la famille (nanotube, nanosphère et nanotuile, avec diverses fonctionnalisations) en tant que nanoréacteurs pour des réactions de réduction du proton et du CO2 déclenchées sous irradiation.
La terre crue, un matériau millénaire aux nouvelles utilisations émergentes

SL-DRF-24-0360

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Jean-Philippe RENAULT

Diane REBISCOUL

Date souhaitée pour le début de la thèse : 01-09-2024

Contact :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Directeur de thèse :

Diane REBISCOUL
CEA - DES/ICSM (DES)//L2ME

0033 4 66 33 93 30

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

Voir aussi : https://www.icsm.fr/index.php?pagendx=3898

Les matériaux en terre crue, qui ont trouvé de multiples utilisations depuis des millénaires, offrent aujourd'hui un potentiel considérable en matière d'adaptation au changement climatique, grâce à leurs capacités naturelles de régulation thermique et hydrique ainsi que leurs production et façonnement à faibles émissions de CO2. Toutefois, des avancées scientifiques restent nécessaires pour une compréhension plus fine de ces matériaux, à l'échelle nanométrique.

Cette thèse se concentre sur le lien entre les propriétés mécaniques des matériaux en terre crue et leur nanostructure en mettant l’accent sur les rôles de l'eau confinée, des ions et des substances organiques. Deux approches, basées sur l’expertise sur les milieux nanoporeux développée au CEA, à Saclay et à Marcoule, seront suivies : l'analyse de matériaux anciens par des méthodes de spectroscopie et de diffusion de rayonnement ainsi que la mise au point d'un protocole de criblage permettant d’identifier les paramètres physicochimiques importants pour la durabilité. Ces recherches, qui visent à terme à optimiser les formulations de matériaux en terre crue, seront menées en collaboration avec des architectes spécialistes du domaine.
Métamatériaux multiéchelles à base de composites polymères biosourcés 3D-imprimés

SL-DRF-24-0326

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Valérie GEERTSEN

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Directeur de thèse :

Valérie GEERTSEN
CEA - DRF/IRAMIS/NIMBE/LIONS

0643360545

Page perso : https://iramis.cea.fr/Pisp/valerie.geertsen/

Labo : https://iramis.cea.fr/nimbe/lions/

La réduction de la densité des matériaux est une des voies privilégiées pour réduire notre empreinte énergétique. Une des solutions consiste à remplacer les matériaux massifs par des microtreillis. Parmi ceux-ci, les structures d’architecture aléatoire inspirées de la structure osseuse possèdent les meilleurs atouts avec un comportement mécanique isotrope et une tenue mécanique accrues tout en répondant aux enjeux de l’économie circulaire et à l'adaptation au changement climatique. Peu consommateurs de matière, ces métamatériaux sont fabriqués par impression 3D et peuvent être compactés en fin de vie. Parmi toutes les technologies de fabrication, l’impression par polymérisation UV de résine liquide organique ou de composite est la plus prometteuse. Elle permet d’obtenir des matériaux résistants mécaniquement, sans générer de déchet de fabrication. Il est en outre possible d’y inclure de forte quantité de charge biosourcées réduisant encore leur impact environnemental.

La thèse proposée ici consiste à mettre au point l’impression de structures en microtreillis composites, depuis la formulation de la résine composite jusqu’à l’étude des propriétés mécaniques (viscoélasticité, limite élastique et résistance à la rupture) en passant par l’étape d’impression et de post-traitement. D’un point de vue plus fondamental, il s’agira d’étudier le lien entre la composition, la forme et les propriétés de surface des charges d’une part, et les propriétés d’imprimabilité de la résine et la réponse mécanique du métamatériau résultant d’autre part. La thèse se focalisera sur l’étude de charge de type cellulose sous forme de nanoparticule, microparticule ou fibre.
Par cette étude multidisciplinaire allant de la molécule chimique à la physique statistique, il s’agira de faire le lien entre la science et la technologie et créer les données de base à un jumeau numérique. Ceci permettra de mieux appréhender l’ensemble des processus et fournira des données de base sur les propriétés d’élasticité et résistance à la rupture qui serviront de socle à la modélisation numérique pour la génération accélérée de nouveaux matériaux.
Développement de lits granulaires denses et fluidisés dans des canaux microfluidiques pour des applications dans la santé

SL-DRF-24-0399

Domaine de recherche : Technologies pour la santé et l’environnement, dispositifs médicaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Florent Malloggi

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Florent Malloggi
CEA - DSM/IRAMIS/NIMBE/LIONS

+3316908 6328

Directeur de thèse :

Florent Malloggi
CEA - DSM/IRAMIS/NIMBE/LIONS

+3316908 6328

Page perso : https://iramis.cea.fr/nimbe/Pisp/florent.malloggi/

Labo : https://iramis.cea.fr/en/Pisp/lions/

Le problème de santé publique majeure qu'est la septicémie nécessite des technologies en rupture pour poser un diagnostic ultra-rapide. Les lits granulaires denses et fluidisés sont des systèmes idéaux pour les processus d'échange liquide-solide ou gaz/solide. Ils sont largement utilisés dans l'industrie en raison de leur rapport surface/volume élevé. Au cours de cette dernière décennie, la microfluidique associée aux laboratoires sur puce a permis de faire de nombreuse avancées notamment dans le cas de la préparation d'échantillon biologique. Nous proposons de développer une plateforme microfluidique polyvente qui permettra de créer de tels lits denses et fluidisés. Nous travaillerons dans un premier temps sur l’incorporation de membranes dans les microcanaux en nous appuyant sur le savoir-faire breveté et développé au laboratoire. Ensuite nous étudierons et caractériserons les lits granulaires pour finalement les tester sur la détection de bactéries dans des échantillons biologiques. Ce travail se fera en collaboration avec nos partenaires physiciens du LEDNA et biologistes du LERI du CEA Saclay.

 

Retour en haut