FROM RESEARCH TO INDUSTRY

www.cea.fr

The HERMES - LLB outstation at the JULIC Neutron Platform

mariano-andres.paulin@cea.fr

Laboratoire Léon Brillouin CEA/CNRS CEA Saclay 91191 Gif-sur-Yvette France

Cea Cors JULIC NEUTRON PLATFORM(JCNS)

TECHNOLOGY TEST PLATFORM FOR THE GERMAN HICANS¹ PROJECT (HBS²)

JUlich Light Ion Cyclotron

JULIC(IKP)

- E:45 MeV
- I_p:6 μA
- τ_{pulse} : 100 μs 2 s

1 High Current Compact Accelerator Neutron Source 2 High Brilliance Source (70 MeV, 90 mA)

Cea Chrs JULIC NEUTRON PLATFORM(JCNS)

TECHNOLOGY TEST PLATFORM FOR THE GERMAN HICANS¹ PROJECT (HBS²)

JUlich Light Ion Cyclotron

JULIC(IKP)

- E:45 MeV
- I_p:6 µA
- τ_{pulse}: 100 μs 2 s

- Ta target (10 cm x 10 cm)
- Polyethylene moderator
- Pb reflector
- 8 extraction channels
- 2 cold moderators: CH₄ et para-H₂
- Max flight-path: 8 m

1 High Current Compact Accelerator Neutron Source 2 High Brilliance Source (70 MeV, 90 mA) FROM RESEARCH TO INDUSTRY

(CNrs)

JULIC NEUTRON PLATFORM

5 BEAMLINES

- Neutron reflectometer (HERMES)
- Prompt Gamma Neutron Activation Analysis (TOAD)
- Detector test station
- Thermal neutrons imaging station
- Epithermal neutrons imaging station

FROM RESEARCH TO INDUST

Cea

BEAMLINES AT JNP

DETECTOR TEST STATION

 $^{10}\text{B}_4\text{C}\text{-monitors}$ filled with 1 bar Ar/CO $_2$ and Ar/CF $_4$ $^6\text{Li-``L''-mask}$

EPITHERMAL NEUTRONS IMAGING STATION

Flat panel detector with a graphite block as a sample.

N. Schmidt E. Mauerhofer T. Gutberlet T. Brückel

SMALL-ANGLE SCATTERING TECHNIQUE → GRAZING INCIDENCE

Useful for surfaces, interfaces, multilayers

Air/Si

Cea Chrs NEUTRON REFLECTOMETRY

TIME-OF-FLIGTH HORIZONTAL REFLECTOMETER (G6-2)

cea chrs

Distance chopper to detector	6.25 m
Distance sample to detector	. 2 m
Wavelength range	.3 Å to 25 Å
Wavelength resolution	fixed $\Delta\lambda$ from 0.1 Å to 1 Å
Angular range	0.1° to 6°
Angular resolution	0.007° to 0.15°
Position of the surface	horizontal
Horizontal beam size at the sample	25 mm
Vertical beam size at the sample	0.5 mm to 10 mm
Detection	³ He
Maximum intensity	1000 count.sec ⁻¹ Å ⁻¹ at 3.5 Å
Background	. 1 count.hour ⁻¹ Å ⁻¹
Minimum measurable reflectivity	5.10 ⁻⁶
Typical acquisition time :	. 4 h - 8 h (soft matter)

Ceal OF WHY DID WE INSTALLED HERMES AT THE JULIC NEUTRON PLATFORM?

- 1. TO TEST THE VIABILITY OF NEUTRONS INSTRUMENTATION AT HICANS
- 2. IT'S A "SIMPLE" INSTRUMENT
- Few parts
- Modular
- Small footprint (A < 8m²)
- 3. WELL SUITED FOR TESTING
- Pulse length adapted to the required resolution
- Useful spectrum
- Performance directly linked to the background
- 4. BIG SAMPLES (1 $CM^2 \longrightarrow 100 CM^2$)

CEA CORS DISASSEMBLY AND INSTALLATION OF HERMES AT FZJ

ORPHÉE REACTOR

JULIC NEUTRON PLATFORM

Cea Chrs DISASSEMBLY AND INSTALLATION OF HERMES AT FZJ

ORPHÉE REACTOR

JULIC NEUTRON PLATFORM

Cera Chris FIRST TESTS AT JNP (DEC-2022)

Control and acquisition : NICOS + Python JULIC: 45 MeV, ~250 nA, 400 µs, 125 Hz, 5% duty-cycle

- Low flux
- High background

PARA-H₂ COLD MODERATOR cea cnrs

X 2.3

Cea Cors PARA-H₂ COLD MODERATOR

cea cors 2023 EXPERIMENTS (JULY)

40 nm Ni on Si ("3"cm x 10cm)

Control & acquisition : NICOS JULIC: 45 MeV, ~ $1 \mu A$, 800 µs, 25 Hz, 2% duty-cycle, P_{target}=1 W

<u>cea</u> Cors 2023 EXPERIMENTS (JULY)

40 nm Ni on Si ("3"cm x 10cm)

Control & acquisition : NICOS JULIC: 45 MeV, ~ $1 \mu A$, 800 µs, 25 Hz, 2% duty-cycle, P_{target}=1 W

REALITY $\phi_{detector} = 0.04 \text{ n/s.cm}^2$ **SIMULATION** $\phi_{detector} = 0.4 \text{ n/s.cm}^2 \text{ x 10}$

- Non-optimized moderator geometry
- Background → shielding

1 W 🗲 100 kW

- Sample size: 10 cm²→ 1 cm
- Measuring time: 10 h → 1h
- Reflectivity: 10⁻³ → 10⁻⁶

DENEX-POSITION SENSITIVE DETECTOR

Cea

CNIS

DENEX-POSITION SENSITIVE DETECTOR

CNIS

Cea

Source	φ _{source} (n/s.cm²)	φ _{sample} (n/s.cm²)	\$ detector	φ _{detector} (n/s.cm²)	
∆θ=0.23	McStas		Ni 40nm	m=4 SM	
JNP (6µA, 2% DC)	30092(1)	429(1)	2.64(1)	91(1)	
HBS (90mA, 2% DC)	1.49 10 ⁹ (1)	2.13 10 ⁷ (1)	1.32 10 ⁵ (1)	4.55 10 ⁶ (1)	
ICONE (100mA, 4% DC)	7.44 10 ⁸ (1)	1.07 10 ⁷ (1)	6.62 10 ⁴ (1)	2.28 10 ⁶ (1)	

*validated analitically and with Vitess

CNIS

Cea

ACKNOWLEDGEMENTS

- -Frédéric Ott
 -Alain Menelle
 -Sebastién Gautrot
 -Mariano Andrés Paulin
 -Karel liquet
- -Karel Jiguet
- -Gaston Exil
- -Jean-Louis Meuriot
- -Olivier Tessier

- -Ulrich Rücker
- -Ivan Pechenizkiy
- -Paul Zakalek
- -Norberto Schmidt
- -Harald Kleines
- -Klaus Lieutenant
- -Zhanwen Ma
- -Alexander Steffens
- -Peter Kämmerling

- -Frank Suxdorf -Alexander Schwab -Stefan Pistel IET, TU Dresden -Sebastian Eisenhut ZEA-1 FZJ
- -Yannick Beßler
- -Max Hannot
- -Eberhardt Rosenthal
- -Ruben Rings

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?