

HiCANS High Current Acceleratordriven Neutron Sources

State of the art

Frédéric OTT Laboratoire Léon Brillouin CEA/CNRS IRFU, CEA Université Paris-Saclay CEA Saclay 91191 Gif-sur-Yvette France

REMINDER → COMPACT NEUTRON SOURCES = CANS

Compact Source Using a low energy (~ 10 MeV) proton accelerator

- Technologically, a new solution for neutron scattering
 - Use of a low energy accelerators (7-13MeV) (Vs 1-2 GeV for a spallation source)
 - Reduced investment costs (5 10 M€)
 - Reduced operation costs (0.5 1 M€)

RANS at RIKEN (Japon) (100W - 700W)

| PAGE 2

EXAMPLE OF TEXTURE MEASUREMENTS

RANS@RIKEN

- E_p = 7MeV
- Use of 30µs pulses at f = $115Hz \rightarrow Duty Cycle = 0.35\%$ (100W)

HOW FAR CAN WE PUSH THE PERFORMANCES ?

Existing CANS in operation : P_{target} < 1kW

1°/ Increase the proton energy \rightarrow 25 – 70 MeV (neutron yield increases) 2°/ Increase the proton current I_{peak} = 100 mA (I_{av}= 2mA, I_{RIKEN} = 0.01mA)

→ HiCANS High Current Accelerator-driven Neutron source (20-100kW)

Peak Brightness [n/cm²/sr/A°/s] SNS-STS 0 $\lambda = 5 \text{ Å}$ ESS-5MW 10¹ J-PARC \cap ESS-2MW SNS-FTS ISIS TS2 10¹ CSNS 0 ISIS TS: HBS TS1 ILL 10¹² ICONE 10¹ 10¹⁰ 10¹¹ 10¹² 10^{9} 10¹³ Average Brightness [n/cm²/sr/A[°]/s]

10

For legibility, the width of the pulses have been dilated by a factor 10.

ICONE: $E_p = 25 \text{ MeV}$, $I_{peak} = 80 \text{ mA}$, duty cycle = 4%, P = 80 kW HBS: $E_p = 70 \text{ MeV}$, $I_{peak} = 100 \text{ mA}$, duty cycle = 1.5%, P =100 kW

NUMERICAL SIMULATIONS QUALIFICATIONS

Numerical simulations of the neutron production on a CANS / HiCANS

MCNP and GEANT4 and TRIPOLI and OpenMC

These results can be ted into Monte-Carlo simulation of instruments (McStas)

PAGE 5

INSTRUMENTS PERFORMANCES ON ICONE

Reference design ICONE

Motto: build the source for the instruments

HiCANS ingredients:

- High average current (3mA vs 0.3mA) (x10)
- Fort couplage cible modérateur (x2)
- Modérateur directionnel (x3)
- Optimisation structure temporelle (x2)

Design HBS 70MeV

	Length [m]	Resolution	Bandwidth	Flux [cm ⁻² s ⁻¹]	Frequency [Hz]
SANS	20.0	5% $\Delta\lambda/\lambda$	2.0-9.0 Å	9.4×10^{7}	24
Reflectometer	22.0	4% $\Delta\lambda/\lambda$	1.3-8.0 Å	1.7×10^{7}	24
Thermal powder diffr.	100.8	$\begin{array}{c} 0.0061 \text{-} 0.014 \\ \Delta \ d/d \end{array}$	0.75-2.4 Å	1.5 × 10 ⁸	24
Cold neutron imaging l	6.0	2.0-10.0%	1.0-15.0 Å	3.0 × 10 ⁸	96
Disordered material diffr.	61.0	$\begin{array}{c} 0.016 \text{-} 0.028 \\ \Delta \ d/d \end{array}$	0.5-1.2 Å	1.9 × 10 ⁷	96
Macromolecular diffr.	12.5		2.0-4.0 Å	4.0×10^{7}	96
Cold chopper spectr.	18.5		1.6-10.0 Å	3.4×10^{5}	96
Backscattering spectr.	102.5	3.0-20.0 µeV	6.05-6.0 Å	7.0×10^{6}	96
Epithermal neutron imaging	37.0		25-80 meV	5.0 × 10 ⁹	384
High energy chopper spectr.	28.5	4% ΔE/E	0.5-2.5 Å	9.0 × 10 ⁴	384
PDGNAA-2	21.0	50%	0.6 eV - 10 MeV	2.7 × 10 ⁷	384

INSTRUMENTS PERFORMANCES ON ICONE

Reference design ICONE

Motto: build the source for the instruments

HiCANS ingredients:

- High average current (3mA vs 0.3mA) (x10)
- Fort couplage cible modérateur (x2)
- Modérateur directionnel (x3)
- Optimisation structure temporelle (x2)

Design HBS 70MeV

	Length [m]	Resolution	Bandwidth	Flux [cm $^{-2}$ s $^{-1}$]	Frequency [Hz]
SANS	20.0	5% $\Delta\lambda/\lambda$	2.0-9.0 Å	9.4×10^{7}	24
Reflectometer	22.0	4% $\Delta\lambda/\lambda$	1.3-8.0 Å	1.7×10^{7}	24
Thermal powder diffr.	100.8	$\begin{array}{c} 0.0061 0.014 \\ \Delta d/d \end{array}$	0.75-2.4 Å	1.5 × 10 ⁸	24
Cold neutron imaging l	6.0	2.0-10.0%	1.0-15.0 Å	3.0 × 10 ⁸	96
Disordered material diffr.	61.0	$\begin{array}{c} 0.016 \text{-} 0.028 \\ \Delta \ d/d \end{array}$	0.5-1.2 Å	1.9 × 10 ⁷	96
Macromolecular diffr.	12.5		2.0-4.0 Å	4.0×10^{7}	96
Cold chopper spectr.	18.5		1.6-10.0 Å	3.4×10^{5}	96
Backscattering spectr.	102.5	3.0-20.0 µeV	6.05-6.0 Å	7.0×10^{6}	96
Epithermal neutron imaging	37.0		25-80 meV	5.0 × 10 ⁹	384
High energy chopper spectr.	28.5	4% ΔE/E	0.5-2.5 Å	9.0 × 10 ⁴	384
PDGNAA-2	21.0	50%	0.6 eV - 10 MeV	2.7 × 10 ⁷	384

MAXIMISING THE BRILLANCE: STRONG COUPLING

Reactor

- Core = 0.1 m³
- Moderator vessel D₂O ~ 1m³

Spallation

- target = 4 litres
- moderator ~ 1 litre (not too well coupled)

Réflector Be

Para-H2 thcikness 1.5cm, diamètre D_M = 15 cm Premoderator H2O Thickness e_{PM} =2cm – diameter D_{PM} = 15 cm

Solid angle= 1.2sr

Low energy nuclear reactions

- Target = 0.05 litres
- moderator ~ 1 litre (coupling 90%)

COLD MODERATORS

Reduced dimensionnality (disk - cylinder) to increase the brillance

- Developed for ESS
- To be experimentally demonstrated

HICANS VERSUS SPALLATION SOURCES

1°/ Accelerator (20 MeV à 70 MeV) Versus (800MeV @ ISIS)

- Construction and operation costs are reduced
- Reduced electrical consumption

2°/ Low proton energies \rightarrow Little production of energetic secondary particles (neutrons, gamma) $E_n et E_{\gamma} < E_p$

- → Reduced shielding : 20T Vs 6000 Tonnes One can get closer to the source → important for time-of-flight instrumentation
- \rightarrow Lesser structures activation \rightarrow reduction of the quantity of produced activated materials
- ➔ Background noise on the instruments is reduced or at least the lower limit is easier to achieve
- → A lot less radiative heating

A few watts are deposited on the moderator compared to kW on a reactor

The technical concepts must be experimentally demonstrated

INITIATIVES ABROAD

ELENA <u>European Low Energy accelerator-</u> <u>driven Neutron facilities Association</u>

LvB in Hungary (MIRROTRON)

HBS in Germany (FZJ / JCNS)

ARGITU in Spain (ESS Bilbao)

ACTIVITIES AT SACLAY

PHASE « 0 » : LE PROJET IPHI – NEUTRONS

Projet SESAME (2017-2021) *** île**de **France**

- Develop a high power 50kW target
- Install a neutron scattering instrument

2016 La première expérience

IRFU – LLB, 13 juin - 6 juillet 2016 Puissance du faisceau = 10 W sur un disque mince en Béryllium

Neutron pulses 100 μs @ 1 Hz

LE PROJET IPHI – NEUTRONS

IRAMIS/LLB Activités **IRFU** + IRAMIS/LLB, période 2018 - 2022 **IRAMIS/NIMBE IRFU/DACM IRFU/DIS** Conception **IRFU/DEDIP** Calculs IRFU/DPhN Simulations mécanique cible, SPR thermomécaniques modérateur, neutroniques blindage Réalisation de deux versions de Mécanique, cibles diagnostiques neutrons DIOGENE Fiabilisation, optimisation et Radioprotection et opération d'IPHI sécurité Béryllium Mesures flux de Réalisation de neutrons, imagerie, campagnes de tests diffraction PAGE 14

HIGH POWER TARGETS PROTOTYPES

2019 - 2020

2021 - 2022

Long term operation of a 30 kW Beryllium target at IPHI. J. Schwindling et al, Journal of Neutron Research, vol. **24**, no. 3-4, pp. 289-298, 2022. DOI: 10.3233/JNR-220024

DIOGENE@ IPHI-NEUTRONS

DIOGENE : Un diffractomètre de neutrons

- 256 tubes ³He tubes
- Angle solide = 0.74 sr
- Event mode electronics (Mesytec)
- Shielding 10cm PE + Cd

Une base de vol courte \rightarrow 6.6m

POWDER DIFFRACTION

MESURE DE DIFFRACTION (2)

Austenite steel rod 200W, 1 hour

Neutron scattering on DIoGENE at IPHI–neutrons. J. Darpentigny and F. Ott, Journal of Neutron Research **24** (2022) 385–393 385. DOI 10.3233/JNR-220018

NEUTRON RADIOGRAPHY

IPHI 1hour at 3kW

QUELQUES ACTIVITÉS EN COURS

CONEMO

DIOGENE : diffractometer at IPHI – Neutrons

- Upgrade of 2 detectors banks \rightarrow « SANS detector », 5mm spatial resolution, 50 x 50 cm²
- Reflectivity + SANS
- Statistical chopper \rightarrow haute résolution with long pulses

CONEMO : cold moderator using para-H₂

Financement PTC

RAEVEN

Event mode radiography

ICONE

Materials Sciences

Neutrons for

CONCLUSIONS

The performances of a HiCANS are potentially equivalent to a medium power research reactor or spallation source

The construction and operation costs are reduced

Technologies

Accelerator

Target

- \rightarrow test on-going (+ other solutions under development)
- Moderator OK / can be updated

OK

Instruments OK

Possibility to benefit from the French ecosystem

- Scientific and technical expertise at Saclay and Grenoble
- Users
- Possibility to reuse R&D efforts from ESS
- Existing instrumentation

Objective : a new French neutron scattering facility

