

PRESTO: diffraction on ICONE

Xavier Fabrèges — LLB JDN 2023 - Erquy

Pulsed sources

- White beam emitted at given frequency and pulse length.
- 3 main parameters to build an instrument:
 - Frequency: intervals between pulses used to separate wavelengths using neutrons ToF
 - Pulse length: affect Q-resolution
 - Moderator to sample distance strongly impact beam properties at sample position.
- Additional equipment (choppers, slits) used to tailor the beam to specific needs => versatile instruments.

- 50 Hz frequency

0 m	10 m	20 m	40 m
		distance (m)	

- 50 Hz frequency => 20 ms measurement intervals

$$\Delta\lambda \propto rac{t_{mes}}{dist}$$

- 50 Hz frequency => 20 ms measurement intervals

- 50 Hz frequency => 20 ms measurement intervals

- Pulse length:
 - Proton pulse length
 - Moderation time = neutron moderation through collisions with hydrogen. Mean free path ~3cm => 10–100 μs
 - Very short proton pulses leads to variable neutron pulse length

Effect on resolution

- Pulse length:
 - Can be tuned using choppers close to the moderator
 - High speed counter-rotative pulse shaping (150/300 Hz)

White shortened pulse

- Pulse length:
 - Can be tuned using choppers close to the moderator
 - High speed counter-rotative pulse shaping (150/300 Hz)

White shortened pulse

- Pulse length: —
 - Can be tuned using choppers close to the moderator —
 - High speed counter-rotative pulse shaping (150/300 Hz)

- Pulse length:
 - Can be tuned using choppers close to the moderator
 - High speed counter-rotative pulse shaping (150/300 Hz)

wavelength dependent pulse length short hot pulse + full cold pulse

- Pulse length:
 - Can be tuned using choppers close to the moderator
 - High speed counter-rotative pulse shaping (150/300 Hz)

- 50 Hz frequency => 20 ms measurement intervals

- 50 Hz frequency => 20 ms measurement intervals
- "Flat" resolution

1 ms pulse length PSC on (75% total flux)

- 50 Hz frequency => 20 ms measurement intervals
- "Flat" resolution

- 50 Hz frequency => 20 ms measurement intervals
- "Flat" resolution

Design constraints

- Pulse length: source + choppers
- Repetition rate: source
- Instrument length: science case + 2 above
- Q resolution from pulse length and distance
- Wavelength range from frequency and distance
- Q-space covered
- No MC = uniform resolution in and out of plane (big 2D detectors can be used !)

Codename PRESTO

- Source parameters (from HBS source term / 4)
 - Duty cycle limited to 4%
 - 800 µs @ 50 Hz
 - Cold spectrum: 60 K centered
 - Thermal spectrum: 300 K centered
- Main instrument characteristics
 - 43.5 m long instrument
 - ~1.8A wavelength band @ sample position
 - Counter rotative pulse shaping choppers
 - 10x20 mm² beam size with +-0.3° divergence

PRESTO: overview

PRESTO: overview

- Dedicated moderator: 20x50 mm (WxH)
- Cold spectrum centered at 60K (~2.6 A)
- 1-4 % duty cycle
 - 200 μs @ 50 Hz (HR)
 - 800 µs @ 50 Hz (HF)

+- 0.3° collimation at sample position (set of slits)
Na₂C₃Al₂F₁₄ reference sample from mostas library

- Cubic sample of 1 cm³
- Diogène/7C2 detector:
 - 133°x26° angular aperture
 - 256 tubes with 128 channels
- 2 modes:
 - HR: 1.4x10⁷ n/s/cm²
 - HF: 5.2x10⁷ n/s/cm²

Beam shape (no coll.)

- HR mode: reduced to 1D pattern (raw data)

Reality: multiple sub-patterns

- HR mode: cat of multiple 1D pattern (raw data)

- 200 μ s pulse length — +- 0.3° divergence

- 200 μ s pulse length — +- 0.3° divergence

- 200 μ s pulse length — +- 0.3° divergence

- 200 μ s pulse length — +- 0.3° divergence

<u>G4.1: measured sample</u>

- Reference/calibration sample: Na₂C₃Al₂F₁₄
- Comparison with measured pattern on G4.1 (Orphée) in 2015
 - 1 cm3 sample, BF₃ detector
 - gold foil flux measurement at MC position
 - 0.1° tube width

- HR mode: reduced to 1D pattern (raw data)

- HR mode: reduced to 1D pattern (raw data)

PRESTO: HR configuration

- 200 μ s pulse length — +- 0.3° divergence

PRESTO: HR configuration

- 200 μ s pulse length — +- 0.3° divergence

PRESTO: HR configuration

PRESTO: HF configuration

- 800 μ s pulse length — +- 0.3° divergence

PRESTO vs G4.1: gains ?

Gains	G4.1	PRESTO (HR)	PRESTO (HF)
Flux @ sample (n/s/cm²)	10 ⁶	1x10 ⁷	3.6x10 ⁷
Detector	80°x4°	133°x26°	
Total			

PRESTO vs G4.1: gains ?

Gains	G4.1	PRESTO (HR)	PRESTO (HF)
Flux @ sample (n/s/cm²)	10 ⁶	1x10 ⁷	3.6x10 ⁷
Detector	80°x4°	133°x26°	
Total	1	190	684

Take home message

- Diffraction on ICONE will offer excellent performance !
- The same design and simulation efforts are to be made:
 - Reflectometry
 - Imaging
 - SANS
 - Inelastic (see Q. Faure)
 - Spin-echo

- All concatenated in the ICONE "Avant-Projet Détaillé"