LLB CRG Inelastic instruments at ILL: from IN6 to SHARP then SHARP⁺

S. Rodrigues¹, P. Lavie¹, B. Homatter¹, S. Petit¹, Q. Berrod², P. Permingeat¹, T. Robillard¹, F. Legendre¹ and <u>J.-M. Zanotti¹</u>

¹ Laboratoire Léon Brillouin , Saclay, France ² IRIG/SyMMES , Grenoble, France

SHARP (Spectromètre Hybride Alpes Region Parisienne)

Cold time-of-flight inelastic spectrometer by "time focusing" LLB CRG "A" at ILL

March 21 2021 : SHARP Up and Running

SHARP (Spectromètre Hybride Alpes Region Parisienne) The Making-Of

Before delivery : 27/10/2020

On line : 21/03/2021

SHARP (Spectromètre Hybride Alpes Region Parisienne) A LLB CRG "A" at ILL

- Cycle 1: January 27 to March 30:
- Cycle 2 : May 11 to July 14:
- Cycle 3: August 24 to Oct. 13:

Construction & first neutrons (March 21 2021) Commissioning Back to users granted beam time (50% 2FDN /50 %ILL)

NB: First neutrons in less than 5 months from the delivery of the "naked" chamber

Credit: Amélien Genelle, CEA/DRF/IRIG/SyMMES

Scientific Fields on the SHARP playground

Study of dynamics and relaxation properties in condensed matter:

- Dynamics of soft condensed matter such as polymers, proteins, biological membranes and gels
- Local and long range diffusion of liquids, solutions and confined systems
- Vibrational density of states of crystalline and amorphous solids
- Properties of quantum liquids, Fermi and non-Fermi systems
- Phase transitions and quantum critical phenomena in polycrystals and single crystals
- Spin dynamics in high-T_c superconductors
- Properties of crystal field splitting

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

Slit Package: Stack of Gd and Al. *thick*=25 μ m Collimation = 2.1°

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

More on « time-of-flight » :

J. Ollivier et J.-M. Zanotti, Diffusion Inélastique de Neutrons par temps de vol. J. Phys. IV, Société Française de la Neutronique, 10, 379–423 (2010).

More on « time-of-flight » :

J. Ollivier et J.-M. Zanotti, Diffusion Inélastique de Neutrons par temps de vol. J. Phys. IV, Société Française de la Neutronique, 10, 379–423 (2010).

Detector chamber under vacuum but Sample environment under controlled atmosphere: Retractable Window

More on « time-of-flight » :

J. Ollivier et J.-M. Zanotti, Diffusion Inélastique de Neutrons par temps de vol. J. Phys. IV, Société Française de la Neutronique, 10, 379–423 (2010).

240 Position Sensitive Detectors 4-144° and Rear Collimator (No cross talks)

Zeolite separate gazes according to their size, concentration and <u>diffusivity</u>.

Samples: M. Drobek & A. Julbe, Institut Européen des Membranes, Montpellier

1- Jump diffusion of confined CH_3 (self)

Samples: M. Drobek & A. Julbe, Institut Européen des Membranes, Montpellier

1- Jump diffusion of confined CH₃ (self)

Samples: M. Drobek & A. Julbe, Institut Européen des Membranes, Montpellier

2- Jump diffusion of confined CD₂ (collective)

Funding

• French-Swedish (CEA - CNRS - Swedish Research Council) agreement for design, construction of neutron spectrometers. Protocol initiated within the framework of the European Spallation Source.

- Conception
- Design
- Building de of the instrument

- Vacuum System of the ToF Chamber
- Detectors Electronics
- Nuclear related regulations and safety

• Funding for sample "lift"

The Actors: professionalism, expertise and involvement

oratoire Léon Brillouin

Nicolas Pautrieux

Pablo Abad

Sylvain Rodrigues

Frédéric Legendre

Benoît Homatter

Thomas Robillard

Pascal Lavie

Quentin Berrod

JMarc Zanotti

Franck Cécillon

Franck Rey

Martin Platz

Pascal Lachaume

Emmanuel Courraud

But also:

Bureau d'etude :	L. Didier
	P. Permingeat
	B. Giroud
• Hall :	B. Jarry
• Aménagement :	P. Coggo
• Mécanique / Usi	nage: J. Beaucourt
	F. Lapeyre
	O. Tessier
• Détecteurs :	JC. Buffet, B. Guérard,
	J. Marchal, F. Pinet,
	J. Pentenero, S. Cuccaro
• SCI :	JM. Delpierre,
	J. Blanc-Pacques,
	S. Sallaz-Damaz
• Vide :	E. lampasona,
	A. Girault
• Automatismes :	C. Mounier,
	B. Sornin
• Electronique & D	AS : P. Mutti
	Y. Le Goc
 Monochromateu 	r: P. Courtois
• Sécurité :	I. Perbet, G. Bonnet
Radio-Protection	: F. Rencurel
	S. Grimaud
	P. Cochet
Administratifs :	A. Verdier, S. Même,
(D. Sineau, E. Colas,
F	P. Combrisson
 Service Commerce 	cial CEA : A. Rozier,
	C. Berthon
Planning :	M. Plassard
Groupes Spectros	scopie: B. Farago, S. Petit
 CEA/DRF & IRAM 	IS: H. Desvaux, F. Daviaud,
	M. Faury, V. Berger
CNRS INP & DAS	: E. Lacaze, E. Solal, S. Ravy
• Management :	E. Eliot, G. Chaboussant,
A. Mei	nelle, C. Alba-Simionesco,
A. Bru	let, H. Schober, M. Johnson,
	J. Estrade, J. Jestin

Christophe Monon

From SHARP to SHARP⁺ Future LLB CRG A Instrument

G. Manzin¹ --> S. Roux¹ (Project Engineer)
 G. Pastrello¹ (Mechanical Design Responsible)
 M. Koza¹ (ILL Scientific Advisor)
 J.-M. Zanotti² (Scientific Responsible)

¹ Institut Laue Langevin , Saclay, France
 ² Laboratoire Léon Brillouin , Saclay, France

Xtal Spectrometers

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

• d GM ≠ d MS: Time Focusing (TF)

---> large λ band: High flux

Xtal Spectrometers

Mesot, Janssen, Holitzner & Hempelmann, J. Neutron Research, <u>3</u>, 293-310 (1993).

• d GM \neq d MS: Time Focusing (TF) ---> large λ band: High flux • d GM = d MS: Monochromatic Focusing (MF) ---> narrow λ band: Good resolution on an extended ω range Laboratoire Léon Brillouin

Time vs Monochromatic Focusing

Monochormatic focusing (IN5 like)

Set by a 4.5 m retractable guide section at the end of the 14 m elliptic guide:
 distance monochromator to sample: 4.5+2 = 6.5 m -- > Time Focusing

NB: The length of the retractable section has been optimized on a FC speed criterium (ratio).

Courtesy Sébastien NICOLLE, SEI@ILL

IN6-Sharp

Scientific Activity

2018 -2020

College	ILL beam time (days)	%	CRG beam time (days)	%	Total	Total
#1: Applied Materials	6	100%	0	0%	6	2%
#4: Magnetic excitations	29	33%	59	67%	88	29%
#6: Liquids/Glasses	21	30%	48	70%	69	23%
#7: Spectroscopy in solid state physics & Chemistry	75	68%	36	32%	111	36%
#8: Biology	0	0%	5	100%	5	2%
#9: Soft Matter	9	33%	18	67%	27	9%
Total	140	46%	166	54%	306	100%

2FDN community: need for high resolution i.e. λ > 6.0 Å

Fluorinated Mica tests IN6-Sharp (Sept. 2020)

FOR SCIENCE

poratoire Léon Brillouir

20

0

40

60

• Pinhole diffraction (IN6-Sharp) : Expected Bragg peak detected at d = 9.25 Å

120

- No detectable natural mosaicity. Confirmed by P. Courtois (Monok Service ILL) test.
- First Xray Reflectivity test P. Courtois (Monok Service ILL) good.

100

80

• SHARP⁺ funded by ILL: so far a second monochromator not in the scope.

IN6: a cold time-of-flight inelastic spectrometer "time focusing"

1- Sharing the H15 guide with D7 and D11:

not a guide end: 4 wavelengths.

4 incident wavelengths

Incident wavelenght	Energy Resolution
4.1 Å	170 μeV
4.6 Å	120 μeV
5.1 Å	70 µeV
5.9 Å	50 μeV

https://www.ill.eu/instruments-support/instruments-groups/instruments/in6

IN6: a cold time-of-flight inelastic spectrometer "time focusing"

2- Beryllium Filter (T= 77 K)

1- Sharing the H15 guide with D7 and D11:

not a guide end: 4 wavelengths.

4 incident wavelengths

Incident wavelenght	Energy Resolution
4.1 Å (not bolow)	170 μeV
4.6 Å	120 µeV
5.1 Å	70 µeV
5.9 Å	50 μeV

https://www.ill.eu/instruments-support/instruments-groups/instruments/in6

Guide End: 3 Disk chopper cascade to remove harmonics

Monochromatic Focusing mode key for experiments at $\lambda > 6$ Å i.e. reach high resolution

At all steps and for all elements McStas simulation challenged by Analytical Calculation

0.1

1.0

Ef (meV)

R(hÿ

10.0

Focal @ 0 meV lambda=5 Ang 1- McStas model seems quite accurate. Here McStas points (\bullet , \bullet) vs analytical calculation of $R(\omega)$. -ih@120200613_sharp+_RETRACT\Resol_6_2_foc_0\ .oc. Div Sample 1.00 2- Resolution well reproduced so flux :6 m (meV) estimate meaningful. =1.91 deg 0859 meV}=148.9 μeV ല 0.10 R(hw=0 meV)=94.8 µe∀ 0.01

Counting rate at least 10 compared to IN6

An "Hybrid" Spectrometer with a 4.5 m retractable guide nose

1- Nose <u>OUT</u> : "IN6 like"

(Time-Focusing Mode) --> Improved energy resolution on a narrow desired energy range.

2- Nose IN : "IN5 like" (M

(Monocromatic Mode) --> constant energy resolution on extended energy transfer range.

The future of SHARP: SHARP⁺

Counting rate at least 10 compared to IN6

Focusing Monochromators (20*30 cm²) HOPG Fluorinated Mica (project) Fermi Speed

Wavelength 2.0 - 6.3 Å 6.0 - 12 Å 50-400 Hz

Energy Resolution 1.20 meV – 0.070 meV

0.12 meV – 0.025 meV

An Hybrid² Spectrometer with a 4.5 m retractable guide nose

1- Nose <u>OUT</u> : "IN6 like" 2- Nose IN : "IN5 like"

(Time-Focusing Mode) --> Improved energy resolution on a narrow desired energy range. (Monocromatic Mode) --> constant energy resolution on extended energy transfer range.

* Brand new 400 Hz Fermi Chopper

March 24 2022

April 2 2024

