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Abstract. The thermal variation of atomic beam diffraction intensities on ( I ,  1, 2n + 1) faces 
of Cu is discussed for large n. The dramatic decrease of intensity at about 600 K is attributed 
to a roughening transition, above which the steps are fuzzy. The steps are assumed to repel 
themselves with a repulsion energy proportional to (2n + I)-’, of elastic or electrostatic 
nature or both. The main parameter of the theory is the energy WO of a kink on a step. 
Experimental data are consistent with a value of WO between 0.2 and 0.3 eV, in agreement 
with very rough theoretical evaluations. Predictions are presented concerning the lineshape of 
diffraction spectra in the high-temperature rough phase, where intensities cannot be written 
as delta functions. The Bragg peak intensity vanishes just below the roughening transition 
temperature, T R ,  as exp[-constant x (TR - T)-’I2] ,  where the constant depends on the 
particular Bragg peak. 

1. Introduction 

Atomic beam diffraction experiments have recently been carried out (Lapujoulade et a1 
1983 and references therein) on (1, 1, 2n + 1) faces of copper (n= 1,2,3). The Bragg peak 
intensity is described by a Debye-Waller factor for temperatures below T,, z 400 K, then 
falls off fairly abruptly. At 600 K the intensity is reduced by a factor two. In the present 
paper, this effect will be interpreted in terms of a roughening transition (Burton and 
Cabrera 1949, Weeks 1980). 

The roughening transition of stepped and isotropic surfaces has been discussed 
recently by Tommei et a1 (1983), Schulz (1984), Bol’shov et a1 (1984), Blatter (1984) and 
Levi (1984). The present work, initiated before we had knowledge of these articles, 
contains new results summarised in Q 11. 

In Q 2 the structure of the surface above and below the roughening transition 
temperature TR is described. A simple theory of atomic beam diffraction is outlined in Q 3. 
A dynamical, microscopic model which depends on two parameters is introduced in $ 0  4 
and 5. Its low-temperature behaviour is studied in Q 6 .  In 0 7 TR and T,, are evaluated 
approximately. Formulae for the Landau free-energy functional are given in Q 8 and the 
lineshape is deduced in Q 9. The results are compared qualitatively with experiment in Q 10. 

The unit of energy is the kelvin, so that the Boltzmann constant is 1. The unit of length 
is generally chosen to be a/@, where U is the side of the cubic cell. 
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2. Structure of the (1, 1,2n + 1) faces of face-centred cubic metals 

The structure of these faces is illustrated in figure 1, which shows the body-centred 
tetragonal cell of sides (a/@, a/@, a). The (1, 1,2n + 1) face is built of narrow strips of 
orientation (1 11) and height 4 2 ,  separated by broad strips of orientation (001) and width 
na/\/Z. The narrow (1 11) strips will hereafter be called steps. (1, 1, 2n’) faces have not 
been observed, to our knowledge, for n’ # 0. The reason is geometrical, namely the (00 1) 
strips can only have width nu/@, with n as an integer. 

The structure described above may be expected to become unstable at high 
temperature for large n since the steps become fuzzy, as shown in figure 2(b). This is the so 
called roughening transition described, for example, by Weeks (1980). When the steps are 
fuzzy, the surface is called rough. The low-temperature phase, when the steps are straight, 
is called smooth (figure 2(a)). For a more precise definition it is convenient to consider the 
equation z = f ( R )  of the surface in a coordinate frame such that the z axis is along 
(1, 1, 2n + l), i.e. perpendicular to the average surface direction. R is a point of a fixed 
(1, 1, 2n + 1) plane. The surface is called rough if the thermal average 

goes to infinity with lRI. 
There is some experimental evidence that roughening actually occurs for (1 13), 

(1 15), . . . , faces. A first argument is that surface defects created by irradiation may be 
healed by annealing. Another piece of evidence is provided by low-energy atomic beam 
spectroscopy, which will be described below. 

I 
z i  

Figure 1. ( U )  The (1 lo), ( 1  1 l), (1 12) and (1 13) faces of the FCC lattice. (b) The (1  13) face 
relative to the centred tetragonal lattice with details of the step structure. 
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Figure 2. Schematic representation of a (1, 1, 2n + 1) face (a) below the roughening 
transition temperature T R  and ( b )  above TR. The x, y ,  z axes are respectively the (1 io), ( 1  io) 
and (001) directions. 

3. Atomic beam diffraction 

The theory of atomic beam diffraction by surfaces relies essentially on the solution of a 
Schrodinger equation which is time dependent because of thermal vibrations. The literature 
about this subject (Zaremba and Kohn 1976, Levi and Suhl 1979, Lapujoulade 1981, 
Garcia et a[ 1982, Armand and Manson 1979, Gorse et a f  1984) is not particularly simple. 
In order to bypass the necessary complications, a simple-minded heuristic description will 
be given here for the use of non-specialists, Firstly, atomic motion will be neglected so that 
the Schrodinger equation to be solved becomes time independent. This will be called the 
static approximation. 

Secondly, following Garcia et a1 (1 979) and Lapujoulade (1 981)' the actual surface 
potential will be replaced by a 'hard-wall' potential, which is exactly zero above some 
equipotential surface (C) and infinite below (figure 3). (C) will hereafter be called the 
'reflection surface'. Since it is an equipotential it is roughly parallel to the actual surface 
but, in the case of low-energy atoms, it is flatter (Gorse et a[ 1984) and does not show any 
strong modulation due to atomic structure. 

As a last approximation, the reflected wave @"(p)  resulting from an ingoing plane wave 
@o(p)  = exp(iko - p )  will be assumed to have the form 
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I’ 

where k = Iko 1 and k,’ is the component of ko normal to the surface. In principle k; depends 
on R ,  but in practice it will be replaced by the component normal to the (001) plane, as is 
correct if n is large. Apart from this additional simplification formula ( 2 )  can be deduced 
from the Helmholz theorem and the Kirchhoff approximation (Hill and Celli 1978). 
Formula ( 2 )  is essentially the Huygens principle and is closely related to the so called 
‘eikonal’ approximation (Garibaldi et a1 1975). 

The approximations introduced in this section are expected to give a qualitative but 
simple description of interference effects between the waves scattered by various points of 
the surface. The static approximation does not describe thermal motion correctly, but 
thermal motion is a well understood problem which is outside the scope of our 
investigation. The present work aims to describe fluctuations of the type displayed by 
figure 2(b). These fluctuations should be slow because they involve mass transfer. Thus, the 
static approximation is justified for a qualitative study of the roughening transition. 

The hard-wall approximation describes qualitatively the fact that low-energy atoms (in 
contrast to those used for channelling) do  not come into the material, and even stop at a 
few angstroms of the actual surface (Gorse et al 1984). This would be correct for atoms of 
wavelength 2n/k much larger than 1 A. 

Finally, the Huygens formula ( 2 )  is essentially a heuristic approximation. Similar 
results might be obtained from the slightly more elaborate formulae used by Hill and Celli 
(1978), Levi et a1 (1981, 1982), Tommei et al (1983) and Blatter (1984). The validity of 
these approximations is discussed carefully by Hill and Celli ( 1  978). 

It is convenient to choose the z axis parallel to (00 l), the y axis along (1 10) and the 
x axis along ( 1  lo). Let x,(y) be the position of the mth step at ordinate y.  At T= 0 we have 
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x, = ml where, for a (1, 1, 2n + 1) face, 

/ = ( n + : > a / f i = n + J .  

The intensity reflected in a direction kl  = ko + q is given approximately by 

813 

(3) 

I = 2 [( 1 - cask a/2))/q: 11 

x c J dy exp[iqyy + im(qxl+ q,a/2)1(exp[iqx(um(y)-uo(0))1). (4) 
m 

This formula is derived in appendix 1 from the Huygens approximation (2). An analogous 
formula has been obtained by Levi et a1 (1982). It is convenient to introduce the notation I‘ 
defined by 

I= 2[(1 - cos(q,a/2))/q~l]Z‘. ( 5 )  

The average value of the exponential in (4) is not easily evaluated. To simplify the 
calculation, the probability P,, that (U&)- uo(0)) has the (integral) value n will be 
assumed to be gaussian, P,, = C exp(-an2), where a depends on m and y.  This assumption 
can be justified for long distances and T# T R ,  as will be seen in 0 8. It is also correct for 
low temperatures because, as will be seen in 0 6, all the P,, are negligible except Po = 1 and 
P, = P- I .  This distribution is well approximated by a gaussian, with a = -In P I .  Assuming 
a gaussian distribution and using the Poisson formula one obtains 

(exp[iq,(um(y)-uo(o))~)= c C exp(-an2 + iq,n) 
n 

m 
dx exp(-ax2 + iqxx + 2i7rpx) 

= C(n/a)’/Z exp[-(qx + 2np>~/2a].  

=“f Jpm 
p=-m 

For small values of a only one term of this sum is important near integral values of 
qx/2n, and the whole sum is negligible for other values of qx.  A good approximation is 
therefore 

(exp[iqx(um(y)- ~o(o)>I) = exp(( - ( u m ( Y ) -  ~o(O>)*(l -COS 4, ))). 

This formula is also satisfactory for large a as can be seen directly from (4), taking into 
account the fact that (u,(y) - uo(0)) can only be equal to 0 or k 1 with an appreciable 
probability (see 0 6). For intermediate values of a the above formula is an acceptable and 
simple approximation. Insertion into (4) and ( 5 )  yields 

I‘=C j” dy exp[iqyy + 4x11. (6) 
m 

In practice the incident beam is not strictly parallel nor monochromatic, and the 
detector is not ideal either, so that interference effects cannot be observed between points 
R, R’ at a distance larger than some coherence length R , .  Mathematically, the intensity 
observed is the convolution of (3) with a ‘resolution function’ of q, which may be assumed 
to be a gaussian of width l/R,, the Fourier transform of which is 

T(R -R’)=(l/RJ exp[-(R-R’)2/Rf]. (7) 
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The function Z’(q) defined by (6) contains a part which is the sum of two-dimensional 
delta functions or ‘Bragg peaks’: 

Gragg = N I J o , q y  c J2nP,q,,-q,o,z exP[-2(4l(y))(l -cos 4 x ) l  (8) 

where N ,  is the number of atoms per step multiplied by the number of steps and qz is 
determined by the condition (k, + q)2 = k 2 .  The exponential factor in (8) is something like 
the Debye-Waller factor of the system of steps. It is a periodic function of qx because 
U,&) is an integer. The true Debye-Waller factor does not appear in (8) because phonons 
have not been taken into account. 

P 

4. Dynamical model 

As can be seen from figure 2 the surface is a succession of steps and each step exhibits 
kinks. In order to give a statistical-mechanical analysis of the problem it is necessary to 
know the energy of any configuration. This energy will be assumed to be 

(9) 

The second term will be discussed in the next section. It must be weak because of the 
large distance between steps. The energy WO of a kink is related to the binding energy of 
Cu. which will be evaluated later on to be between 0.2 and 0.3 eV. The model (9) implies 
several assumptions. Firstly, the number of steps is assumed to be constant, in agreement 
with the experimental fact that (1, 1,2n + 1) faces are stable. Thus, a constant term 
proportional to the number of steps has been neglected in (9). Secondly, the total number 
of atoms on the surface is allowed to fluctuate slightly although it is actually fixed. In the 
limit of large size the fluctuation is weak and the procedure is expected to be correct. It is 
equivalent to assuming that the number of atoms may vary but that an appropriate 
chemical potential compensates the energy gain or energy loss when an atom sticks at the 
surface at a kink, or leaves it. 

Another approximation is to neglect the interaction between kinks on the same step. 
This is quite justified because the kink energy WO is much larger than the temperatures of 
interest, between 100 and 700 K (Lapujoulade et a1 1983). 

Finally, the steps will always be assumed to proceed forward in the y direction (except 
at kinks) and never to come backward. This is probably a very good approximation. 

W= WO x number of kinks + interaction between different steps. 

5. Interactions between walls 

The interaction between two pieces of steps at a distance r apart is analogous to the 
interaction between two adatoms on a surface (Desjonqueres 1976, 1980). There is a 
repulsion proportional to l/r3 due to the elastic strain produced by the steps (Lau and 
Kohn 1977, Gordon and Villain 1979t). There is also an electrostatic interaction energy 
between the electric dipoles which form on the steps. This energy is also proportional to 
l / r3 ,  but it is not necessarily repulsive because there is no obvious symmetry relation 
which obliges the dipoles to be normal to the surface. Another long-range interaction may 
be related to Friedel oscillations and is more complicated. As a working hypothesis, a l/r‘ 

t This Letter contains a mathematical mistake. The interaction between steps is actually always repulsive. 
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repulsion will be assumed between two pieces of steps at distance r. Therefore, the 
repulsive energy between two steps is proportional to I-’. The necessary energy per atom 
to move one step by an interatomic distance is therefore, at T= 0, 

wn = Q[ l/(l-- 1)* + 1/(1+ 1), - 2/12] Q/14 = Q/(n + 1/2)4 (10) 
where Q is a constant. 

Long-range repulsion between steps is necessary to ensure the stability of the low- 
temperature phase. With short-range interactions the surface would be rough at all 
temperatures, as in similar problems considered by Villain and Bak (1 98 l), Pokrovskii and 
Talapov (1980) and Haldane and Villain (198 1). With attractive interactions the surface 
would be unstable. Oscillatory interactions proportional to l /r2 are predicted theoretically 
in certain cases (Lau and Kohn 1978) but are hardly consistent with the experimental 
observation of a series of (1, 1, 2n + 1) faces. 

Also, long-range repulsion together with matter conservation account for the 
metastability of high-index faces. Suppression of the highest terrace in figure 2 would 
probably lower the energy, but matter should flow to lower terraces. This is excluded by 
long-range repulsion. 

In this paper the temperature is always assumed to satisfy the following condition, 
actually fulfilled in experiments by Lapujoulade et a1 (1983): 

(1 1) W, < T <  WO. 

6. Statistical mechanics at low temperatures T <  TR 

The low-temperature expansion may be calculated by the same methods as for the Ising 
model (Domb 1974). Only the lowest order will be calculated here. 

For low temperatures the displacement u,(y) is zero for almost all values of m and y.  
At some places, u,(y)= & 1, but then there is a low probability that U,, , ( y )  and u,-,(y) 
are non-zero. The probability that Iu,(y)l is 2 or larger will also be neglected. The energy 
of a detour of p atoms starting from a given point y ,  on the mth step is, according to (9) 
and (lo), 2W0 + ly, -yl Iw, and the probability is 

P(mi ~1 3 Y Z )  1.2 ~ x P ( - ~ P W O  -Pwn I Y Z  -YI I) (12) 

where the factor 2 accounts for the fact that the detour may be to the right or to the left. 
The average value ( u,(y’)um,(y’ + y ) )  ( y  > 0) vanishes for m’ # m as a consequence of 

the approximations made. For m’= m, one should sum (12) over all values of y ,  and y ,  
which satisfy the conditions y ,  <y’<y’+y < y 2 .  Note that if y ,  is an integer, y’ and 
(y’ + y )  are half integers because the centres of the atoms are at y , ,  while y’ lies between 
two atoms. We find that 
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where N,, is the number of degrees of freedom of the system of steps (see Q 3) and 

cix = 4 x  1. 
From (1 3), (1 1) and (1 4) we deduce that 

(lu,12> 2: 2 a 2 ( ~ / w , , ) [ e x p ( - 2 ~ ~ ~ > / C o 2 W , 2  + 4 sin2(qYa/2&1 (16) 

where the lattice constant a has been re-introduced. 
Step roughness may be neglected when (13) is very small for all values of y ,  in 

particular for y = 0. This happens for temperatures T lower than a temperature T,, defined 
by 

( W n l T n )  exp(Wo/Tn)= C (17) 
where C is a constant of order unity. Formula (17) was obtained by Lyuksyutov et a1 
(1981) and Pokrovskii and Talapov (1984) in relation to an adsorption problem. 

T, is easily deduced from Lapujoulade et a1 (1983). It is the temperature at which 
experimental points deviate from the ‘theoretical’ curve, which is essentially the 
Debye-Waller factor derived from the usual phonon theory (Armand and Manson 1979, 
Levi and Suhl 1979, Mayer 1981). For instance, for the (1 13) face figure 5 of Lapujoulade 
et a1 indicates T,, ‘Y 500 K. Relations (10) and (1 7) yield 

(T,,,/T,,) exp(Wo/T,, - W ~ / T ~ ~ ) = ( Z / ~ ’ ) ~  = [(2n + 1)/2n’+ i)I4. (18) 
Experimentally, T,, does not depend very strongly on n. This indicates a high value of 

WO. However, experimental data for the (1 13), (1 15) and (1 17) faces are consistent with 

The temperature T,, given by (17) is not the roughening transition temperature TR. 
However, it will be seen in Q 7 that TR is of the same order of magnitude (see equation 

(1 8). 

(30)). 

6.1. Value of WO 

Assuming pair interactions, WO can be deduced from the cohesive energy of Cu which is 
3.5 eV per atom or 3.5/6 eV per pair. We can create two kinks on a step by breaking one 
bond. Therefore 

WO = 3.5/12 eV = 3400 K. 
Another approximate evaluation is the following, which takes band effects into 

account. The bandwidth is proportional to the square root of the second moment, which is 
proportional to z ,  the number of neighbours. Assuming a constant distance between 
neighbours, the energy is 3.5 eV x 
for an atom on a kink of 
WO z 0.2 eV = 2300 K. 

6.2. Reflected intensity 

Insertion of (1 3) into (6) yields 

I’=IArrgg + (8T/~,)[exp(-2PW0>/(P2w,2 + q:)I 

x (1 --os 4,) exp[ -2 (~%~) ) (1  -cos qx)l (19) 

where the exponential of the small quantity (u,(y)&(O)) has been expanded. The first term 



Roughening transition of metal surfaces 817 

of (19) is given by (8). The second term is completely diffuse in the x direction but sharply 
peaked around qy = 0. In the present approximation the satellites at qY = 2nz vanish. This is 
not completely true because the scattering surface is slightly modulated by the atomic 
structure. 

7. Exactly solvable models and roughening temperature 

In order to study the situation at higher temperatures the model should be more completely 
defined. The Hamiltonian is expected to have the form 

(20a) x=C wo(um(y+ 1)-Um(y)I2 + 1 C f (m’ -m,y ’ -y ;um, (y ’ ) - -m(y ) )  
m, Y m, m’ Y,Y’  

with the conditions 

u,(y)  = integer (20b) 

u m  + 1 ( Y )  - um(Y> > -1. (20c) 
The detailed form of the function f might in principle be known for large distances 

from elasticity theory and electrostatics, but no attempt will be made to realise this 
ambitious programme. By means of appropriate approximations, the problem will be 
defined in terms of the parameters WO and w, defined in $4 4 and 5 .  

Firstly, an argument similar to that of Q 5 suggests that f decreases as (m’-m)-5 or 
(m  1 - m)-4 after integration over y.  This decrease is sufficiently rapid so that we can keep 
only interactions between nearest neighbours, m’ - m = 1. This point will be discussed 
further in Q 8. 

Secondly, condition (1 1) implies that walls are constituted of long straight lines, so that 
U,, l(y‘)= U,, I(y) in the whole range wherefis appreciable. Formula (20a) now reads 

(21) x= WO 1 (um(y+ 1 ) - u m ( ~ ) > ~  + 1 g(um+l(y)-um(y)) 

g(u) = Q(l + u)-~. (22) 

g(u) = 0 u > o  (230) 

m, Y m, Y 

where, according to Q 5 ,  

A model which is exactly soivable is obtained if (22) is replaced by the approximations 

The problem can be treated by the transfer matrix method. Let N,  be the number of 

(24) 
where the additive constants ? I  may be neglected for a large sample. A consequence of 
(24) is that the quantities 

steps. The obvious relations u l ( y )  > -1  and uN,dy) < I ,  together with (23c), imply that 

-1-m < u , ( y )  < I +  N ,  - m  

um(y>=2m + Um(Y) (25) 

0 < U,(Y)  < U Z ( Y )  <.  . < U N , ( Y )  < 2N,. 

satisfy the relations 

(26) 
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It is convenient to introduce a variable U = 1, 2, 3, . . . , 2N, and a spin at(y) defined by 

6 ( Y )  =1 
G ( Y >  = -4 otherwise. 

if U = U&) for some m 

The Hamiltonian defined by (21) and (23) can easily be expressed in terms of the a:. 
We then introduce the transfer operator. The non-commutativity of its various parts may 
be neglected if relation (1 1) is satisfied, and the transfer operator is then easily seen to be 
the exponential of the Hamiltonian of a spin-4 Heisenberg-Ising antiferromagnetic linear 
chain: 

s=-z (u;u;+l +o;a;+1 +Ba:o;+,) 
U 

where the U are integers and 

B =(wn/2T) exp(WdT), (28) 

and then Hamiltonian (23) follows. An important point is that (26) implies 
~ N B  

a:=0. (29) 
U =  1 

If this condition is not satisfied, there is no roughening transition (Haldane 1980). This 
means that if the surface has a few extra steps it is rough at all temperatures. This result is 
a consequence of the approximation (23a). 

In the absence of a magnetic field (27) shows a phase transition at B= 1. For B > 1 
there is long-range antiferromagnetic order along the z direction and a gap in the excitation 
spectrum. In terms of the original model this corresponds to well defined steps and terraces 
and a finite correlation length for fluctuations. At the transition point the gap vanishes and 
the system remains gapless for all B < 1. In this region the spin system exhibits XY-like 
behaviour with no long-range order or power-law decay of correlations. This phase 
corresponds to the rough phase of the crystal face. From (28) we locate the transition 
temperature 

(wn/TR> e x p ( W d T d = 2 .  (30) 
This relation is analogous to (17) and shows that T R  and Tn are of the same order 
of magnitude. The transition is of infinite order (Baxter 1982) and is in the 
Kosterlitz-Thouless universality class. In the ordered phase, near B = 1, the gap vanishes 
as 

A - exp{-j2/[2(B - 1)]1’2} (3 1) 

( - e x p ( c o n s t a n t / d r T ) .  (32) 
The specific heat and order parameter show similar singularities. 

Another solvable model, closely related to the present one, has recently been 
introduced by Abraham (1983). The model uses a condition similar to (22) but otherwise 
can be solved exactly. The solution is based on the fact that the allowed wall configurations 
can be put into correspondence with those of the six-vertex model in an electric field, and 
proceeds by application of the Bethe ansatz. Since the Heisenberg-Ising chain (27) is itself 
equivalent to the six-vertex model (Baxter 1982) it follows that Abraham’s and the present 
model exhibit the same phase transitions and identical critical behaviour. 

(Baxter 1982). This implies that in the original model the correlation length (diverges as 
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It should be noticed that although these exactly solvable models confirm the existence 
of the phase transition and give the exact nature of the singularities in the thermodynamic 
functions, they are of little use for the calculations of the correlation functions. Indeed, the 
correlation function required, (exp[ik(u,,,(y) - u,,,(O))J), cannot be expressed solely in 
terms of the spin correlation function of the Heisenberg-Ising chain although, of course, its 
long-distance behaviour is closely related to that of the latter. For this reason we turn to a 
more intuitive method that captures the essence of the exact solutions as far as the critical 
behaviour is concerned and leads also to a calculation of the correlation functions. 

8. Free-energy functional 

As seen from (6) ,  we need the correlation function ((u,,,(y) - uO(O))*). This information is 
not easy to obtain from the Bethe ansatz methods of 0 7. Furthermore, the long-range 
character of the interaction between steps, pointed out in 0 5 ,  is offset by the 
approximation (23a) and it is of interest to check whether it is correct. For these reasons, 
another approach will be used from now on, namely length rescaling. 

In contrast with the Bethe ansatz, rescaling methods are extremely physical and 
intuitive. The general idea is to evaluate thte free-energy functional F as a function of the 
long-wavelength Fourier components 

Gm(y)=(l / f i )  1 e x ~ ( i ~ x m  + iqyy) ( 3 3 )  
1, < 4 u  
4y  4cy 

where qcli and qcy are appropriate cut-offs. 9- is defined by the fact that the probability of a 
given distribution {uq} is proportional to exp[-PF({u,})]. The simplest form of the free 
energy F which can describe the qualitative features of the present model was introduced 
by Jose et a1 (1977), namely 

The last term favours values of U,,, which are close to integers, and is a consequence of 
(20b). The first term implies a harmonic approximation of the second term of (20a). 
Neglecting possible renormalisation of v', we obtain 

where f"(m, y ;  z )  denotes the second derivative with respect to z. This quantity can also be 
identified with w,, as seen by moving a single step by f 1 : 

q'= W,. (36) 
The harmonic approximation in the first term of (34) overestimates the interaction 

between steps for large (U,, ,+ -U,,,), in contrast with (23a), and underestimates the 
interaction for negative values, in contrast with (23c). For large n, the harmonic 
approximation is better, but not necessarily in the cases which have been studied 
experimentally. Anyway, both models are in qualitative agreement and predict a 
roughening transition at a temperature given approximately by (1 7), as will be seen. 

Before starting the rescaling procedure, ii,,,(y) = um(y), qcr = qcy = 2n, formula (206) 
implies U =  CO. The free energy (34) should be identical to the Hamiltonian (20a) apart 
from a long-wavelength approximation (1 -cos q,, -iq;, 1 -cos C& ~42) which actually 
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is not strictly necessary. This implies q =  WO. It may be of interest to notice that, iff is 
replaced by a quadratic form, if condition (20c) is released, if u,,(y’) is replaced by umt(y) 
and if interactions beyond nearest neighbours (Im’ - ml > 1) are neglected, the Hamiltonian 
(20a) reduces to the SOS model studied by Chui and Weeks (1976): 

x= WO 1 (um(Y+ l ) - u m ( ~ ) > ’  + W, 1 (um+1(Y)-um(y))’* (37) 
m. Y m, Y 

This model is known to have a roughening transition. It can be transformed into a two- 
dimensional Coulomb gas (Chui and Weeks 1976) which can then be transformed into the 
‘sine-Gordon’ model (34). However, the usual derivation involves certain approximations 
which are not good in the anisotropic situation considered here, WO % w,. But the 
transformation of (37) into (34) can be achieved by length rescaling, as seen in appendix 2. 

The transformation of the free energy (34) under length rescaling has been studied by 
many authors (Jose et af 1977, Wiegmann 1978, Ohta and Kawasaki 1978, Ohta 1978, 
Amit et af 1980, Knops and Den Ouden 1980). They have shown that there is a 
roughening transition at a temperature TR which is given, if U is small, by the relation 
m = 4 7 r T .  Using the value of 9 calculated in appendix 2 (see also table 1 below), we find 
that 

( w, / TR exp( WO/TR ) = t 71’ (38) 

This value is more than twice as large as (30) but, as seen in appendix 3, there is a large 
correction due to the finite value of U which reduces the right-hand side of (38). There is no 
doubt about the existence of a phase transition because we have a good theory at high 
temperature which predicts a rough phase, and a good theory at low temperature which 
predicts straight, well ordered steps. When qw and qcy are decreased, the parameter U of 
formula (34) goes to a limit U,. The definition of the roughening transition implies U, = 0 
for T > T, and U ,  # 0 below TR. Replacing the cosine in (34) by its second-order Taylor 
expansion, we obtain a harmonic free energy which easily yields the average values: 

(lu,l’> = T/(99: + V ’ Z  + 473U,). 

9 = 4 w, eqwo 

(39) 

Comparison with (1 7) gives, for T < TR, 

(40) 

and 

U ,  =(p2wi/87r2) ezgwO. (4 1) 

Formula (39) holds for small q, at T#T,. The values of q and q’ for small q are 
renormalised and differ somewhat from the values (36) and (A.9). In terms of these 

Table 1. Parameter values above and below TR. 
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renormalised parameters the following relation (Ohta 1978, Jose et ai 1977) is exact: 

Jlllll~ T =  TR = d  ~ T R  ( 4 2 )  
The values of the relevant parameters derived in this section and in appendix 2 are 
summarised in table 1. 

One advantage of the present approach compared with that of 6 7 is that the long- 
range nature of the interaction may be taken into account. According to § 5 ,  the function 
f ” in ( 3 5 )  should be proportional to (m2Z2 The result of the summation on y is 
proportional to m-4. This ensures the convergence of the sum (35 ) .  If the interactions 
between steps were proportional to l/m or larger, the surface would never become rough. 

9. Fluctuations 

In expression ( 6 )  which describes atom diffraction spectra, the quantity to be evaluated is 

( (Um(Y>-Uo(0)>2)=(2 /N)  1 (luq12)(1 -exp[i(&m + qYy)1), 

The average value is given by (39) with a good approximation at long distances for T f  TR. 
P f f i  

For T > R R  we find from appendix 3 (formula (A.48)) 

T ( P ) ~ ( ( U , ( Y ) - U O ( ~ ) > ~ )  = ( T / q h ? )  r’ (dp/p)(l -Jo(PP)) ( 4 3 )  
-0 

wherep, is a cut-off and 

p =  [y2(q’ /q) ’ I2  + m2(q/q’)’’2]1’2. 

Relation ( 4 3 )  gives 

a r ( p )  T 1 
-z-- - 

aP n m P  
whence 

T(p)=constant + ( T / n m )  In p 

where the constant depends upon the short-wavelength degrees of freedom. 
At TR we find (see appendix 3 )  

( 4 4 )  

( 4 5 )  

T(p,  T =  T R ) =  constant + ( 2 / n 2 )  In p, ( 4 6 )  
a universal behaviour. 

For T > TR the Debye-Waller exponential in (8) vanishes and, if the diffraction pattern 
is interpreted in terms of delta functions, its intensity is zero. However, it is probably 
possible to interpret directly the lineshape observed experimentally with the help of ( 6 ) ,  ( 4 4 )  
and (45 ) .  The intensity is 
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where 

Pt(9)=ta2q,Z\/;7/11'+((1xI-41a/2 +2nv)21/i% 

m=-(T/n"l --os 4 x 1 .  (49) 

and 

The intensity (48) has a singularity when the following 'Bragg conditions' are satisfied: 
q,, = 0, ( q x / -  qra/2)/2n. However, the intensity is only infinite for those Bragg positions 
which satisfy the additional condition T( 1 -cos q x )  < n-. 

For T <  TR it is shown in appendix 3 that (43) has to be modified as follows in terms of 
an appropriate cut-offp, : 

where the correlation length diverges near the critical point 

In <z  I(T- TR)/TRI-1/2 ( T <  TR)* ( 5  1) 

T(P)  = (2/n2>(ltl - -Ko(p/O) (52) 

Formula (50) yields 

where It/ cc I(T- TR)/TRl and KO is the Bessel function of the second kind. 

intensity below but near TR is found to be 
By a derivation similar to the one that leads to equation (A.59) in appendix 4, the 

with 

1; = 2n Jx ~ l , ( p , ,  P> exp[(2s~/n2)(K0(p/t)- I ~ I - ' / ~ > I  d~ (53) 
0 

and p, is as defined above. 
By dividing the range of integration into two parts, p < < and p s {, and using the 

asymptotic properties of the Bessel functions, (53) can be approximately divided into two 
parts: 

ZL =Zi, + I;, .  

I , ,  leads to the usual series of Bragg peaks 

4 h g g  = 2 4,  = c 8qx,-q,0/2, 2,(exP[-(24,2/nZ)14 - 1'2 I) (54) 
,=-x P 

and I;, is a background given by 

As / t  I + 0 the intensity of the Bragg peaks decreases and the background term takes over. 
It can be easily seen that, at It1 =0, ( 5 5 )  exactly matches formula (48) derived above TR, as 
it should. 
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10. Comparison with experiment 

The experimental data of Lapujoulade et a1 (1 983) have been interpreted in terms of Bragg 
peaks. The typical Bragg peak intensity is displayed in figure 4. Conventionally, a Bragg 
peak is a delta function in the intensity as a function of the scattering vector q. Above TR 
the Bragg peaks (in the conventional sense) vanish but the intensity (47) does exhibit sharp 
maxima at the Bragg positions, which are in practice not easily distinguished from 
conventional Bragg peaks. Even below T, the ‘diffuse’ part ( 5 5 )  may be confused with 
conventional Bragg peaks. Thus, a detailed comparison between theory and experiment 
would require a careful analysis of the experimental lineshape. This analysis is not 
available. A more quantitative, numerical theory would also be desirable. 

For these reasons we shall only consider the low-temperature region, when the intensity 
is given by (19). The diffuse part will be ignored and our attention will be focused on the 
Bragg part given by (8). The intensities observed by Lapujoulade et a1 (1983) can be 
expressed as 

I ,  =G e-2WG(T)yG(T) ( 5 6 )  

C u  1117) C u  1117) 

Cu 1113) 

0 2 5 0  500 7 5 0  
T I K )  

Figure 4. Intensity roughening factor ym,,(T) for the diffraction of He by Cu (1 13), ( I  15). 
(117). 3, experimental data. The full curve is a guide to the eye. The dotted and broken 
curves are theoretical results corresponding respectively to the values WO = 3400 K and 
WO = 2300 K. The fitted values of w ,  are given in the text. 
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where 1; is the intensity of the Gth peak for a perfectly ordered and motionless lattice and 
G is a surface reciprocal lattice vector, defined by G x l +  G,a/2=0, GxI-G,a/2= 2zp, 
G, = 27rp’, where p’ should vanish according to (8) and is in practice very small. 2 WG(T) is 
the Debye-Waller factor due to thermal motion and yG(T) is the structural roughening 
factor. From an extrapolation of the low-temperature data where ~~(7‘)- 1 it is possible to 
obtain yG(T) from the experimental data. This has to be compared with its value calculated 
from (8): 

where q G  is defined by q ~ 1 - q ~ a / 2 = G X l - G , a / 2 ,  q&=G,=O and (& +q~) ’=p .  We 
must emphasise once more that the roughening factor (57) has been obtained using severe 
approximations which are expected to be valid only when the terrace width is large with 
respect to the lattice parameter. This is not the case with the faces which are studied here 
where we have I =  1.5, 2.5 and 3.5, respectively. The dependence upon 46 displayed by 
(57) is expected to be especially realistic. So a comparison between (57)  and the data for 
each diffraction peak would be very tedious and possibly meaningless. Thus we prefer to 
calculate, for given incidence conditions, the total coherent diffraction intensity given by 

We then replace cos q; in (57) by its average over the different peaks, i.e. (cos &) = 0, so 
that we get 

Figure 4 shows the experimental values of ycoh(T) for the different faces which have 
been studied. Before comparing these data with the model we have to make the following 
remarks. 

(i) The error bars are not due to the experimental uncertainties but simply reflect the 
crudeness of the approximation (cos 41;) = 0. 

(ii) The tendency of the curve to level out at high temperatures is due to an increase of 
the inelastic background which has not been subtracted. For Cu (1 17) this is expected to 
be significant immediately above the threshold temperature so that the slope of the curve is 
certainly greatly affected. 

(iii) For Cu (1 17) a threshold effect at T, 2 3 15 K is very clear. This is less 
pronounced on the other faces. 

Assuming the above value for Cu (1 17) we get the expected T, for the other faces from 
(18): 

Cu(115)  T,= 356 371 
Cu(113)  T,= 431 479 

Figure 4 shows that there is a slightly better agreement with WO = 3400 K. However, 
the other value (discussed in 4 6) cannot be rejected because the threshold is not very well 
defined. As explained at the beginning of this section, the reason for the relatively slow 
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decrease of intensity with increasing temperature may be that some ‘diffuse scattering’ 
(formula ( 5 5 ) )  has been attributed to Bragg scattering 

The fit of figure 4 has been obtained with the following adjusted values of w,, (in 
kelvin): 

Face 113 115 117 

w, (for WO = 2300 K) 32.5 8.10 3.50 
w,(for wo=3400K) 3.5 0.58 0.13 

Relation (10) is not satisfied by the (1 13) face in any case, and this is not too surprising 
because the steps are so close to each other. In the case of the (1 15) and (1 17) faces, (IO) is 
reasonably well satisfied provided we choose WO = 3400 K. 

11. Conclusions 

The basic results of this paper are the following. 
(i) For temperatures lower than the roughening temperatures TR, the reflected 

intensity is a sum of Bragg peaks, as seen from (8). 
(ii) The Debye-Waller factor (not included in (8)) is given by the usual phonon theory 

below a temperature T,,. Between T,, and TR there is an additional weakening factor 
displayed by (8). 

(iii) T,, and TR satisfy relation (1 7). Relation (18) is deduced by assuming elastic and 
electrostatic repulsion between steps. 

(iv) The experimental data art roughly consistent with (1 7) and (1 8). The appropriate 
value of WO is consistent witb the value 0.3 eV deduced from pair interactions, as well as 
the value 0.2 eV expected from naive band theory. The parameter Q which characterises 
the repulsion between steps (rchtion (10)) cannot be deduced from existing experiments. 
Relations (17) and (18) can be applied for large n only. The experimental data of 
Lapujoulade et a1 (1983) sumet that the (110) face also roughens at a fairly low 
temperature, but this is another story. 

(v) Above TR the lineshape b no longer given by (8), but by (48). The exponent r 
increases rapidly with temperature according to formula (49) and table 1. This is in 
qualitative agreement with the experimental data of Lapujoulade ef  a1 (1983), although 
these data have been interpreted in terms of Bragg peak intensities and this is incorrect 
above T R  on account of (48). The vanishing of the ‘Debye-Waller’ factor predicted by (54) 
and the variation of r with & in the lineshape above T,, according to (49) and in the 
background term below TR,  according to ( 5 9 ,  require an experimental check. 

Our results concerning the Debye-Waller factor are in disagreement with the 
statements of Lyuksyutov et a1 (1981) and Pokrovskii and Talapov (1984). They agree 
with recent work (Tommei et a1 1983, Schulz 1984, Bol’shov et a1 1984, Levi 1984). With 
respect to these papers, the present work contains some new results, for example formulae 
(18) and (54). 

There should be some temperature above which steps do not proceed uniformly 
forward in the y direction. This corresponds to melting in the adsorption problem 
(Pokrovskii and Talapov 1984) and to the transition to paramagnetism in magnetic 
problems (Villain and Bak 1981). Here it corresponds to the roughening transition of the 
(001) face, which is found to occur experimentally at T >  700 K, since the intensity follows 
the usual Debye-Waller factor up to that temperature (Lapujoulade et a1 1983). 
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Appendix 1. Reflection of atomic beams on a hard surface 

To solve the Schrodinger equation 

@(R) = 0 (R E C) (above (C)) 

we make the ansatz 

@(PI= exp(iko p) - d 2 R  G(R) exp(&, R) exp(ik1R -pl)/lR - P I .  (A.2) 

Above the surface (A.2) satisfies (A.1). G(R) is determined by the condition @(R)=O if 
R E  (C). We find for R E (E) 

Ln 

d*R‘G(R’) exp[ik,, ( R ’ - R )  + klR’-RI]/JR‘-RI = 1. J;r, (A.3) 

The solution of this equation is, basically, given by Garcia el a1 (1979). The Huygens 
formula (2) (used in 0 2) is not equivalent to their solution even to order zero, but it is exact 
if (E) is a plane, as can be seen from (A.3). 

The reflection surface (E) will be approximated by planar parts parallel to the (001) 
plane of the equation z=O. The planar parts are separated by steps. This picture, 
suggested by Gorse et a1 (1 984), neglects the modulation of the scattering surface by the 
crystal structure. If this is correct, most of the scattering by a (001) face should be 
concentrated in the specular peak, which is true (Lapujoulade et a1 1983). At T=O the 
steps are oriented along the (1, - 1,O) axis since they are orthogonal to the (00 1) and (1 1 1) 
directions as seen in 0 1. Let the (1, - 1,O) axis be denoted y and let the x axis be parallel to 
the (1 10) direction. Let x,(y) be the position of the mth step at ordinate y. The intensity 
reflected at large distance p = k l p / k  of a surface of area A is proportional to I&’A/p2,  
where I is given, according to (2), by the formula 

A Z = J  )” j dr&’dydy’exp[ iq , (x-x’ )+iq , (y -y’ ) ]  

where (q+, qy,  q,)= q= kl -k,,. x, y, z(x,y) are the coordinates of a point R of (C) and 
6(x,y) is the angle of (E) with the (001) plane at R. The case of interest is that of a 
(1, 1,2n + 1) face with large n, so that cos e(x,y) may be replaced by 1 to a reasonable 
approximation. If the (001) plane is decomposed into strips separated by two consecutive 
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steps, formula (A.4) reads 

Appendix 2. Derivation of the ‘sine-Gordon’ free energy (34) and of the parameters q, q’ 
and Ufor Z2 TR 

At sufficiently high temperatures the interactions between steps may be ignored if 
fluctuations of sufficiently short wavelength along y are considered. In particular, moving 
the cut-off qcy =qc reduces to a one-dimensional problem. For an isolated chain of N’ 
atoms, the Hamiltonian (20) reduces to 

The average value of the Fourier transform uq =N’-’/’ Zy u(y)  eQy is readily deduced: 

( / ~ , 1 ~ ) = 2  e-pWo/q’. (A.7) 

This is just the value which might be deduced from a free energy of the form 

with 

q=i T epwo. 

However, (A.7) can be deduced from (A.8) only if the discrete nature of the u(y)  is 
ignored. This implies that only the long-wavelength part 

i i(y)=~‘-’/’  1 uq e - k  =n-’ 2 u(y’) sin[q,(y‘-y)]/(y’-y) ( A . ~ o )  

is considered. The cut-off qc should be such that ((ii(y + n/q,) - ii(y))’) is larger than 
unity, or 

(A. 11) 

9 1 %  Y’ 

q, 6 K = 4n2 exp( -pWo>. 
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The reason for the factor 4n2 will become apparent. The weakness of (A.8) is that the 
discrete nature of the original model is completely lost. The error related to this 
approximation can be tested by average values of the form 

(A. 12) 

Using (A. 10) this expression may be written as a product of factors (exp(if(y)D(y))) where 
D(y)= u(y + 1)- u(y), and the coefficientsf(y) depend on thep,. IfPW, is large and if the 
number of non-vanishing p,  is small,f(y) is small and 

(exp(if(y)D(y))) 2: 1 - 2( 1 - cosf(y)) N exp(-f2(y) e-gw0). 

The final result is 

(A. 13) 

where 

K ( y )  = (4e-Bw0/qc) dz [z(z - q,y)/lz(z - qcy>I] si(z) si(z - qcy) (A.14) 
J - C O  

where si(z) = ,$E du sin x/x. In particular, formula (6.24 1) of Gradshtein and Ryzhik 
(1 965) yields 

(A. 15) 
In analogy with (34) we wish to reproduce (A. 13) using an approximate free energy of 

K(0) = - K/nqo. 

the form 

.F= 1 qq21u,12 + U(1 -cos 2zii(y)). 
4 < 4 c  Y 

To lowest order in U, the quantity (A. 12) is given by 

(A. 16) 

(A. 17) 

wherep= C p ,  is assumed to be positive and (. . .),, denotes the average value for U =  0. In 
the special casep, = J,, o, identification of (A. 13) and (A. 17) yields 

PU 2 exp[-2n2((6(y)- C(0))2)0] = exp(K(0)). 
,=-CO 

(A. 18) 

Using (A. 10) and (A, 6), relations (A. 18) and (A. 15) yield after some calculation 

U2: 2 n T ( q , / ~ ) ” ~  exp(-K/nq,) (A. 19) 

In the particular casep, = P J ~ , ~ ,  X i s  of order U p 2  according to (A.13) and of order U p  
according to (A. 17). Thus, the two formulae can only coincide to first order in U, and U 
should be small. This implies that qc should be sufficiently smaller than K. 
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The approximation (A. 16) may be tested on the expression 

&(Y) = (exp[Wfi (y)  - WNI). (A.20) 

For small y both (A. 13) and (A. 17) yield X z ( y )  = exp(--lclyl). For qc IyI 9 1 ,  (A. 17) is not 
correct, but the correct (and obvious) result X 2 ( y ) =  (e~p(2inii(O)))~ can of course be 
obtained from (A. 16) to second order in U. For intermediate values of y ,  the expansion of 
X z ( y )  limited to order U’ is expected to be an acceptable interpolation. The same 
conclusion holds for other tests of (A.16) using more complicated quantities of form 
(A. 12). 

We conclude that (A.16) is justified qualitatively provided qc is sufficiently smaller than 
IC, defined by (A. 1 1). q is given by (A.9) and U is given by (A. 18) or, more explicitly, by 
(A. 19). 

The approximations of this appendix are correct if the interaction between steps per 
degree of freedom, namely w,n/qc, is small with respect to T. According to (A.11) this 
implies that (w,/T) exp(/3Wo)4 1. Comparison with (30) or (38) shows that T should be 
large with respect to T R .  Near T R ,  the formulae of this appendix are presumably only 
acceptable qualitatively and qc must be of the same order as IC. 

Appendix 3. Renormalisation and behaviour near T, 

The Hamiltonian associated with the free energy (34) is 

H = H ,  + H ,  (A.21) 

(A.22) 

(A.23) 

where e= q/T with similar definitions for 0’ and To. 
Let ii,(y) be defined by (33) for a given cut-off and let Gh(y) be the corresponding 

quantity for smaller values of qcr, qcr. The effective Hamiltonian for the new variables can 
be obtained by a cumulant expansion. Keeping terms up to second order in To we obtain 

(A.24) 

where Ho(b) is given by an expression like (A.22) but with smaller cut-offs qL,y =quc,yb-l ,  
and 

A H ( b ) = ( H , ) ,  --mG)* - ( H , ) 3 .  (A.25) 

H(b) = Ho(b) + A H ( b )  

The averages are taken over the high-q components of the field with a distribution 
Poc exp(-Ho). The cumulants are easily calculated: 

( ~ 1  ) b  = - PO 1 p dy E cos 2 n ~ ( y )  exp(-2x2 ( U i ( y ) ) b )  (A.26) 
m 

(H: )b  - ( H I ) :  = Pi 1 I Jdy  dy’cos 271(iih(y)-iih,(y’))(exp[-2n2((iim(y) 
mm’ 

(A.27) 



830 J Villain et a1 

A term proportional to cos 27r(&(y) + iik(y’)) has been neglected in (A.27). This is 
justified as it can be shown that this term is irrelevant near the fixed point of the 
renormalisation group transformation to be derived below. 

The averages in equations (A.26) and (A.27) are easily evaluated for infinitesimal In b: 

(A.28) 

(A.29) 

where Jo is the Bessel function of the first kind and 

p =  [y2(fi’/fi)l/2 + m y f i / f i ’ ) l / y .  (A.30) 

Expanding in Fourier series the difference ( f iL(y)-  i&(y’)) in (A.27) and keeping 
terms up to order q2 (A.25) reduces to 

AH(b)=J  1 (bij(b)q: + Sfi‘(b)qi)lui12 -6p,-,(b) dy cos 2nfik(y) (A.3 1) 

with 

Id 4cJb m 

6ij(b)=(2n3/fif)F;a In b (A.32) 

6fi’(b)=(27r3/fi)pia In b (A.33) 

6po(b) = - p o ( n / m )  In b (A.34) 

and the constant 
I 

a = n l  $Jo( r )d rz in .  

Finally, rescaling the length unit and the field to restore the cut-off to its original value 
we obtain the renormalisation group equations in differential form: 

aFo/ar= [ 2 - ( n / m ) ] E J  (A.35) 

afi/a1=jn4 @ / f i t  (A.36) 

r3fi7a1=jn4 F;/fi (A.37) 

where I is defined as b = e‘. The quantity (3) does not appear in this appendix so that no 
confusion is possible. 

Equations (A.35)-(A.3 7) are the generalisation to the anisotropic case of the equations 
for the isotropic sine-Gordon model derived by other authors (Ohta and Kawasaki 1978). 

It can be seen that the ratio ( f i / f i f )  remains invariant under a change in length scale. 
Then (A.36) and (A.37) can be combined to give a single equation for the geometric mean, 

K=m, (A.38) 

which reduces the system of equations to 

a t o / a 1  = (2 - n/K) Po (A.39) 

a K / a l = j d  @ / K .  (A.40) 
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Linearising about the fixed point K =f n, Po = 0 we finally obtain 

ax2/ai= - 2xz2 

azl/al= - 2xz2 

(A.4 1) 

(A.42) 

where 

x = n/K - 2 (A.43a) 

z = (4n/\/J) Vo. (A.43b) 

From (A.41) and (A.42) we deduce that (Ohta and Kawasaki 1978) 

~ ' ( 1 )  - ~ ~ ( 1 )  =constant (A.44) 

where the constant is independent of I and vanishes at TR. It is convenient to choose I such 
that qcu = L K Z  K, and 4, = n. Then Vo is given by (A.19). It should be noted that, in the 
present appendix, renormalised length units have been used, i.e., there is one degree of 
freedom per unit area. In appendix 2 physical length units were used, so that the relation 
between Vo and the quantity (A.19) is Vo = ( ~ / q , ) U / T ~ ( 2 f i ) - ' / ~  exp(-l/An). 

TR can be evaluated from (A.44). The constant vanishes, Z is given by (A.43b) and x is 
given by (A.43a) where qq' is the product of expressions (A.9) and (36). The result is 

(wJTR) exp( Wo/TR)=jn2[ 1 + (n/@) e-'/d]-2 z 1. (A.45) 

The right-hand side varies from 0.6 to 2 when 1 varies from l/n to n. The correction to (38) is 
huge, so that only the order of magnitude is reliable; this is the same as in (30). 

Away from the critical point we can expand the right-hand side of (A.44) in powers of 
the deviation from the critical temperature. To linear order 

~ * ( l ) - Z ~ ( l ) = a ( T -  TR)/TR 

where the constant 

a = 8n W o / f i T R .  

(A.46) 

(A.47) 

Above TR Z is irrelevant and (A.41) and (A.42) can be integrated up to I =  CO. Then 
the correlation function can be calculated by equation (25) with V ,  = 0. We then obtain 

where p is given in (A.30) andp,  is a cut-off of order @. 

ar (P) /aP-<m\ / j j ; j i )  JlW dx= T I P Q m .  

Integration yields 

r(p) = ( ~ / n m )  In p + constant 

where the constant is not universal. At TR (A.43) and (A.44) give 

rR(p)=2 lnp/n2. 

Formula (A.5 1) coincides with (46), which is thus proven to be correct. 

(A.49) 

(A.50) 

( A S  1) 
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Below TR Z is relevant and iterations of the RG equations take the variables outside the 
range of validity of (A.4 1) and (A.42). Thus renormalisatkm should stop when deviations 
from the fixed-point behaviour become significant. Thc solutions of (A.41) and (A.42) 
below TR are 

40 = fi tan(@o - i+m (A.52) 

w =  fi sec(@o -&m) (A.53) 

where (Do is a constant and It1 =(IT- TRI/T~)a. Inverting (A.52) we find 

I= ~ f i )  [ tan- '~o) / \ / i l i ) -  tan-'($l)/I/ITi)l. (A.54) 

For T-, Ti, 4 0 )  is positive, but the renormalisation group equations take it through 
negative values. Stopping the iteration when x(l*)=-Ix(l*)l, with Ix(l*)I < 2, we obtain 
from (A.54) as It1 -0 

1*=2n/f i .  (A.55) 

At this point (A.44) yields Z 2 ( l * ) z x 2 ( l * ) = o ( l ) .  Then we can apply the harmonic 
formulae to the renormalised problem since we are well outside the critical region. The 
result is 

I - ( P ) - ( T / d m 3  S' [P dP/(P2 + r-2)1(1 -Jo(PP)) (A.56) 
0 

wherepl is a cut-off of order e'*(q*q'*)''* and the correlation length 

= ( 1/2n) el*(q*q'*) 114 v; - 112. 

The integral (A.56) is easily evaluated. For p F r and T-,  T i  

(A.57) 

r(p)=t2/n2)[~t~-1/2 e x ~ ~ p / 5 ) 1 .  (A.58) 

Appendix 4 

Using the Poisson formula expression (34) is transformed into the sum of integrals 

I '= c ~ ~ d m d y p - ' e x p [ i q , y + i m ( q , l + ~ q , a + 2 n v ) ] = ~  I ,  (A.59) 
V = - m  

where 

r = T q : / 2 n m  

and p is given by (3 1). It is convenient to introduce the notation 

(A.60) 

The vth integral in (A.59) may be written as 
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where P= d G ;  andp, is given by (29b). I ,  is the limit, for E - O ,  of 

I,(&) = 272 lm e-Ep pl-'Jo(Pp) d p  

=2nr(2--t)(P + E ~ ) ( ~ ~ ) - ~ F ( I  - i r ,  i(t- 1); 1 ;  t2/( t2 + c2)). 
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Formula (6.621) of Gradshtein and Ryzhik (1965)  has been applied. It is correct only if 
t is smaller than 2. For P # 0 and E 2: 0 the argument P 2 / ( P 2  + c2) of the hypergeometric 
function may be replaced by 1 .  Using formula (9.122.1) and (8.335.1) of Gradshtein and 
Ryzhik (1965) we find 

1 , (~ )=[r (2 - t ) /~ ( r /2 ) r [ i (3 - t ) ] ] (~~  + ~ ~ ) - l + ' / ~ .  

Formula (48) results for t# 0. For 7 = 0 ,  the intensity is 0 for P#O, as it should be. 
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