

SHARP: un CRG A à l'ILL

Contrat en fin de rédaction : signature en juin 2017

Groupe-LLB-Sharp :

Responsable :JMarc Zanotti*Co-responsable :Quentin Berrod *Ingénieur :Sylvain RodriguesSupport ingenérie :Pascal LavieResponsable Technique :Benoit Homatter *Soutien Technnique :Frédéric LegendreFabien PrunesEt les équipes techniques du LLB

* : Personnels IRAMIS/LLB en poste à Grenoble.

C02

Schedule September 1st 2017- August 31 2023

• September 2017- September 2018:

"Normal" IN6 operations Operated by LLB personnel (2 Scientists, 1 Technician) 50% French time+ 50% ILL time

• September 2018- August 2019 (ILL long shutdown):

Deconstruction of the IN6 secondary spectrometer + Infrastructure Work Delivery and furbishing (Cd coverage, PE protections, electronics) of the new detector box

• September 2019 – August 31 2023:

Back to normal operation but due to steric hindrance with D7 SHARP will offer a single incident wavelength 5.1 Å (This if peak of the flux delivered by the guide).

After September 1st 2023, how about a Super-SHARP?

Depending on the funding success of the phase 2 of the Endurance program, SHARP moved to a new position with dedicated guide.

Then full incident wavelength (2.0 -5.9 Å) coverage can be offered.

IN6 / Sharp: Scientific Fields

Study of dynamics and relaxation properties in condensed matter.

- Vibrational density of states of crystalline and amorphous solids
- Dynamics of soft condensed matter such as polymers, proteins, biological membranes and gels
- Local and long range diffusion of liquids, solutions and confined systems
- Properties of quantum liquids, Fermi and non-Fermi systems
- Phase transitions and quantum critical phenomena in polycrystals and single crystals
- Spin dynamics in high-T_c superconductors
- Properties of crystal field splittings

IN6: a cold time-of-flight inelastic spectrometer High Flux by "time focusing"

A 3 PG monochromator array with horizontal focussing

FOR SCIENCE

4 incident wavelengths			
Incident wavelenght	Energy Resolution		
4.1 Å	170 µeV		
4.6 Å	120 µeV		
5.1 Å	70 µeV		
5.9 Å	50 μeV		

https://www.ill.eu/instruments-support/instruments-groups/instruments/in6

A brand new secondary spectrometer:

- Full Sample environement with
 2 modes: atmospheric vs under vacuum mode
- ToF chamber (2.5 m) under vaccuum

• Under vacuum mode

• Atmospheric mode

PSD: Position Sensitive Detectors

1- Detection coverage / counting rate:Gain of a factor 4 compared to IN6

2- State of the art PSDs +electronics assembly: breathtaking joint Q definition and resolution performances.

Magnon dispersion curves of BNFS at T = 2 K $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. This experimental curve as measured on IN5C (ILL, France).

^[1] M. Loire, V. Simonet, S. Petit, K. Marty, P. Bordet, P. Lejay, J. Ollivier, M. Enderle, P. Steffens, E. Ressouche, A. Zorko, and R. Ballou, Parity-Broken Chiral Spin Dynamics in Ba₃NbFe₃Si₂O₁₄, PRL 106, 207201 (2011).

Single wavelength 5.1 Å operation until

Sharp detector box & steric hindrance with D7

Wavelength requests in proposals for IN6 from all ILL colleges since 2009:

College	λ = 4.0 Å	λ = = 5.1 Å	λ = 5.9 Å
#1: Applied Materials		1	1
#4: Magnetic excitations	8	18	7
#5: Magnetism		2	
#6 : Liquids/Glasses	7	13	4
#7: Spectroscopy Solid-state physics	35	35	2
#8: Biology	1	39	8
#9: Soft Matter		11	2
Dir/Test	4	7	1
Total	53	126 (62%)	25