| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay
Etude en transport de la phase pseudogap des cuprates supraconducteurs : point critique, limite Planckienne et transformation de la surface de Fermi.
Anaëlle Le Gros
Mardi 11/12/2018, 14:00-17:00
Amphi. Bloch, Bât. 774, Orme des Merisiers, CEA-Saclay

Manuscrit de la thèse.


Résumé :

Malgré trente ans de recherche intensive sur les cuprates, l'origine de l'appariement des électrons dans leur état supraconducteur demeure un mystère. Probablement associé à cet appariement, on trouve dans leur diagramme (T, dopage) l'énigmatique phase pseudogap, responsable d'un grand nombre de propriétés exotiques dans l'état normal. Le débat autour de la nature de cette phase dans les cuprates dopés en trous a motivé le travail expérimental présenté ici. Nous nous intéressons plus spécifiquement au point critique à T = 0 noté p*.

Pour étudier cette région du diagramme, nous travaillons d'un côté à l'obtention de monocristaux de cuprates surdopés, et de l'autre côté à des mesures de transport sur divers cuprates, soit dans des composés peu étudiés près de p*, soit en utilisant de nouvelles sondes pour l'étude du pseudogap. Nous faisons croître des monocristaux de HgBa2CuO4+δ par technique d'auto-flux, puis modifions leur dopage ainsi que celui de cristaux de Bi₂Sr₂CaCu₂O8+δ à l'aide de traitements thermiques sous atmosphère contrôlée. La première étude en transport porte sur la résistivité linéaire en T à T → 0, caractéristique d'un métal étrange, à p ≥ p*. Nous mesurons la résistivité en champ magnétique intense d'un échantillon Bi2212 à p ≥ p*, révélant également ce phénomène. Nous étudions la pente de la résistivité et la comparons dans différents cuprates dopés en trous et en électrons, mettant en évidence que le taux de diffusion correspond à la limite Planckienne (ħ/τ = kBT) dans les cuprates.

La seconde étude porte sur la transformation subie par la surface de Fermi en traversant p*. Nous établissons pour la première fois la magnétorésistance en angle à des dopages autour de p*, dans La1.6 -xNd0.4SrxCuO4 en champ magnétique intense, qui devrait mener à terme à de nouvelles informations sur la transformation de la surface de Fermi. La troisième étude porte sur la nature de la phase pseudogap pour p ≤ p*, jusqu'aux faibles dopages. Une étude de l'effet Hall thermique dans une large gamme de dopages (jusqu'à p = 0) et dans quatre cuprates différents permet de révéler une nouvelle signature du pseudogap, d'origine magnétique.

Mots-clés : fr     Supraconductivité, Cuprates, Transport, Synthèse monocristalline.


Transport study of the pseudogap phase of cuprate superconductors : critical point, Planckian limit and Fermi surface transformation

Despite thirty years of intense research on cuprates, the origin of the electronic pairing in the superconducting state of these materials remains a mystery. Probably linked to this pairing, we find in their (T, doping) diagram the enigmatic pseudogap phase, responsible for a great number of exotic properties in the normal state. The debate about the nature of this phase in the hole-doped cuprates motivated the experimental work presented here. More specifically, we are interested in the T = 0 critical point p*.

In order to study this region of the phase diagram, we work, on one hand, on obtaining single crystals of overdoped cuprates and, on the other hand, on transport measurements in several cuprates, either in little-studied compounds near p*, or by using new probes to study the pseudogap. We grow single crystals of HgBa2CuO4+δ with a self-flux technique, then modify the doping of these crystals along with Bi₂Sr₂CaCu₂O8+δ crystals thanks to thermal treatments under controlled atmosphere. The first transport study focus on the T-linear resistivity at T → 0, characteristic of a strange metal, at p ≥ p*. We measure the resistivity in high magnetic field of a Bi2212 sample at p ≥ p*, revealing again this phenomenon. We study the slope of this resistivity and compare it in different hole-doped and electron-doped cuprates, highlighting that the diffusion rate corresponds to the Planckian limit (ħ/τ = kBT) in cuprates.

The second study focus on the Fermi surface transformation across p*. We establish for the first time the angle-dependent magnetoresistance across p*, in La1.6 -xNd0.4SrxCuO4 in high magnetic field, which should lead eventually to new information about the transformation of the Fermi surface. The third study focus on the nature of the pseudogap phase at p ≤ p*, down to low dopings. A study of the Hall effect in a large doping range (down to p = 0) and in four different cuprates allows us to unveil a new signature of the pseudogap, involving magnetism.

Keywords:  Superconductivity, Cuprates, Transport, Crystal growth.

Contact : Dorothee COLSON

 

Retour en haut