| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | English
Univ. Paris-Saclay
Transport électronique et thermique dans des nanostructures
Arthur France-Lanord
Lundi 21/11/2016, 14:00-17:00
Amphi. Bloch, Bât. 774, Orme des Merisiers, CEA-Saclay

Manuscrit de la thèse.


Résumé :

La miniaturisation continue des composants électroniques rend indispensable la connaissance des mécanismes de transport à l’échelle nanométrique. Alors que les processus simples de conduction dans les matériaux homogènes sont bien assimilés, la compréhension du transport à l’échelle nanométrique dans les systèmes hétérogènes reste à améliorer. Par exemple, le couplage entre courant, résistance et flux de chaleur dans des nanostructures doit être clarifié.

Dans ce contexte, le sujet de thèse est centré autour du développement et de l’application de méthodes de calcul avancées pour la prédiction des propriétés de transport électronique et thermique à l’échelle nanométrique. Dans une première partie, nous avons paramétré un modèle de potentiel inter-atomique classique adapté à la description de systèmes multicomposants, afin de modéliser les propriétés structurelles, vibratoires et de transport de chaleur de la silice, ainsi que du silicium. Pour ce faire, une approche d’optimisation automatisée et reproductible a été mise en place. En guise d’exemple, nous avons calculé la dépendance en température de la résistance de Kapitza pour le système silice amorphe - silicium cristallin, ce qui a permis de souligner l’importance d’une description structurelle précise de l’interface.

Dans une seconde partie, nous avons étudié la décomposition modale de la conductivité thermique du graphène supporté par un substrat de silice amorphe. Plus précisément, l’influence de l’état de surface (hydroxilation, etc) sur le transport thermique a été quantifiée. Le rôle déterminant des excitations collectives de phonons a été mis au jour.

Finalement, dans une dernière partie, les propriétés de transport électronique du graphène supporté par une bi-couche de silice, système récemment observé expérimentalement, ont été étudiées. L’influence d’ondulations dans la couche de graphène ou dans le substrat, souvent présentes dans les échantillons réels et dont l’amplitude et la longueur d’onde peuvent être contrôlées, a été dégagée. Nous avons également modélisé le champ électrique généré par une grille, et déterminé son incidence sur le transport électronique.


Electronic and thermal transport in nanostructures

Abstract :

The perpetual shrinking of microelectronic devices makes it crucial to have a proper understanding of transport mechanisms at the nanoscale. While simple effects are now well understood in homogeneous materials, the understanding of nanoscale transport in heterosystems needs to be improved. For instance, the relationship between current, resistance, and heat flux in nanostructures remains to be clarified. In this context, the subject of the thesis is centered around the development and application of advanced numerical methods used to predict electronic and thermal conductivities of nanomaterials. This manuscript is divided into three parts.

We begin with the parameterization of a classical interatomic potential, suitable for the description of multicomponent systems, in order to model the structural, vibrational, and thermal transport properties of both silica and silicon. A well-defined, reproducible, and automated optimization procedure is derived. As an example, we evaluate the temperature dependence of the Kapitza resistance between amorphous silica and crystalline silicon, and highlight the importance of an accurate description of the structure of the interface.

Then, we have studied thermal transport in graphene supported on amorphous silica, by evaluating the mode-wise decomposition of thermal conductivity. The influence of hydroxylation, as well as the significant role collective excitations of phonons play on thermal transport, have come to light.

Finally, electronic transport properties of graphene supported on quasi-two-dimensional silica, a system recently observed experimentally, have been investigated. The influence on transport properties of ripples in the graphene sheet or in the substrate, which often occur in samples and whose amplitude and wavelength can be controlled, has been evaluated. We have also modeled electrostatic gating, and its impact on electronic transport.

Contact : Nick BARRETT

 

Retour en haut