| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay

Les molécules possédant une liaison Si-H, ou hydrosilanes*, sont des composés essentiels dans l’industrie du silicium, mais leur production est difficile et énergivore. Leur utilisation croissante comme réducteurs doux offrant des sélectivités remarquables, notamment pour la conversion du CO2 ou de la biomasse, nécessite le développement de nouvelles voies d’accès faciles à mettre en œuvre.

La transformation catalytique de déchets industriels, tels que les composés à liaisons Si-oxygène (siloxanes) ou des chloro-silanes (Si-Cl), en hydrosilanes grâce à l’hydrogène moléculaire est une voie récente offrant des perspectives intéressantes : l'équipe LCMCE du NIMBE (CEA/CNRS) a ainsi développé des catalyseurs moléculaires métalliques et organiques permettant d’effectuer, avec d’excellents rendements, les transformations [Si]-X (I, Br, Cl) en [Si]-H dans des conditions douces de température et de pression (1 à 10 bar de H2). Le laboratoire étudie le mécanisme de ces transformations (observations RMN, synthèses et structures cristallines des espèces mises en jeu, cinétique, études DFT) pour mettre en évidence les espèces responsables de l’activité catalytique et améliorer les processus de transfert d’hydrures.

Dans la production industrielle de méthanol (CH3OH), l'atome de carbone est usuellement issu du méthane (CH4), provenant pour l'essentiel de gisements de pétrole, gaz naturel et de schistes. Une nouvelle stratégie pour préparer le méthanol à partir de l'acide formique (HCOOH), lui-même issu du CO2, est présentée par une équipe du NIMBE/LCMCE. Le procédé utilise la dismutation* de formiates silylés (HCOO--Si-R3) en méthoxysilanes (CH3-O-Si-R3), réaction catalysée par des complexes de ruthénium. Le méthanol est ensuite obtenu par simple hydrolyse. Des solutions aqueuses de méthanol (> 1 ml) ont été ainsi obtenues avec un rendement élevé (> 70 %). De plus, il est montré que les sous-produits siliciés de la réaction peuvent être recyclés avec un réactif bon marché et facilement disponible. Le procédé se révèle ainsi durable et respectueux de l'environnement.

La réduction catalytique de composés organiques comportant des liaisons C=O suscite de nombreuses études en chimie fine pour former des molécules d’intérêt (éthers, alcools…), mais l’obtention sélective d’un produit de réaction est parfois difficile. Le choix du catalyseur et du réducteur joue ici un rôle essentiel.

L‘équipe LCMCE du NIMBE (CEA/CNRS) a utilisé pour la première fois un composé d’actinide, dérivé d’un ion très courant dans l’environnement et l’industrie nucléaire, i.e. l’ion uranyle [UO2]2+, pour effectuer la réduction catalytique d’aldéhydes par des hydrosilanes. Ce catalyseur d’uranium (VI) s’avère très efficace et, combiné avec une modulation de l’encombrement stérique du silane, permet d'obtenir sélectivement des éthers ou des alcools silylés. À partir d’études cinétiques et de caractérisation des espèces organiques formées et des complexes de l’uranyle, un mécanisme catalytique est proposé.

Caractérisés par la présence d’une liaison Si-H, les hydrosilanes sont des réducteurs chimiques très puissants. Ils permettent notamment de transférer en une seule étape un hydrure (H) et un groupement chimique contenant Si, à un composé organique possédant une liaison double (C=C ou C=O) [1]. Cette propriété est en particulier mise à profit à l’échelle industrielle pour la fonctionnalisation des silicones et la synthèse des élastomères. Au NIMBE, ils sont utilisés pour la réduction des liaisons C=O du CO2 ou de la biomasse, ouvrant l’accès à des composés chimiques à haute valeur ajoutée et à des carburants comme le méthanol [2].

Des chimistes du NIMBE proposent de réaliser de telles réactions en remplaçant les hydrosilanes par une famille d’hydrures basée sur l’acide formique. Ils ont pu démontrer qu’en présence de catalyseurs moléculaires à base de ruthénium développés au laboratoire, ces hydrures – les formiates de silicium – réduisent les liaisons C=O de composés organiques (aldéhydes).

L’avantage des formiates de silicium est qu’il est possible de les régénérer par réaction du produit oxydé avec de l’acide formique, source renouvelable d’hydrures, car pouvant être produit par hydrogénation ou électroréduction du CO2 dans des conditions énergétiques favorables.

Alors que 98 % des produits chimiques organiques sont issus du raffinage du pétrole et du gaz naturel, l’utilisation de déchets de la biomasse pour la production des plastiques, solvants, peintures… permettrait d’améliorer la contribution de l’industrie chimique au développement durable. Si la lignine contenue dans les parois des cellules de bois représente la source la plus abondante de composés aromatiques renouvelables, seule la production de vanilline exploite actuellement cette ressource pour l’isolement d’un produit aromatique, avec de surcroit un rendement faible de 0.3 %. Cette limitation provient de la nature complexe de la lignine qui est un polymère hétérogène, chimiquement inerte et dont la nature varie avec l’espèce de bois.

En développant une nouvelle stratégie de dépolymérisation, alliant des catalyseurs sans métaux à des réducteurs chimiques, les chimistes du NIMBE ont développé un nouveau procédé permettant de récupérer des composés aromatiques sous une forme pure à partir de 15 espèces de bois différentes. Les rendements, de 0.5 à 2.4 %, dépassent largement ceux de l'état de l’art.

 

Les matériaux polymères ont envahi notre quotidien car ils allient un faible coût et une grande facilité de production à des propriétés polyvalentes. Issus essentiellement de la pétrochimie, ces plastiques posent néanmoins la question de la gestion des déchets qu’ils engendrent.

Seule une faible portion de déchets plastiques est actuellement recyclée et les procédés présentent un faible intérêt économique et environnemental, nécessitant de nouvelles solutions qui s’accordent avec l’évolution des législations.

Pour répondre à cette problématique, les chimistes du Laboratoire de Chimie Moléculaire et Catalyse pour l'Énergie (LCMCE) de l'IRAMIS/NIMBE ont récemment développée un procédé de dépolymérisation de matériaux polyéthers, polyesters et polycarbonates, en utilisant des catalyseurs sans métaux fonctionnant à la température ambiante.

 

La synthèse de produits chimiques organiques repose à plus de 95% sur l’utilisation de matières fossiles, telles que les hydrocarbures ou le charbon, comme source de carbone. Alors que ces ressources sont destinées à s’amenuiser, le recyclage de déchets chimiques devient une priorité pour assurer une industrie durable.

Une équipe du CEA et du CNRS a relevé ce défi en recyclant deux déchets dans une même réaction : le CO2 et le PMHS (Poly-methyl-hydro-siloxane, un sous-produit de l’industrie des silicones). Pour la première fois, ces deux molécules sont valorisées à travers une réaction classique de l’industrie chimique, la formylation des amines, et pourront remplacer avantageusement les réactifs pétrochimiques usuels (monoxyde de carbone, acide formique et formiate de méthyle). Ces travaux font l’objet d’une publication dans le Journal of the American Chemical Society.

 

Alors que nos ressources pétrolières deviennent insuffisantes et que les émissions de dioxyde de carbone (CO2) atteignent des valeurs record, le recyclage de ce déchet permettrait de produire des composés chimiques utiles, au lieu de tout faire reposer sur la pétrochimie. Pour faire face à ce défi, une équipe du CEA et du CNRS a mis au point une nouvelle stratégie pour recycler le CO2 en développant une nouvelle transformation permettant de convertir le CO2 en formamides, une classe de molécules habituellement issue de la pétrochimie et largement utilisée pour la fabrication de textiles, médicaments et colles. Ces travaux font l’objet d’une publication dans la revue Angewandte Chemie (2011), sélectionnée comme Very Important Paper (VIP) par les experts.

 

Retour en haut