| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay
Dispositifs de mesure pour la qualité de l’air
Dispositifs de mesure pour la qualité de l’air

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [see: Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des dispositifs de mesure et à les valider, en lien avec un chercheur post-doctorant.

Missions principales :
Trois actions principales seront à conduire :
(i) Fabriquer des matériaux
(ii) Fabriquer des dispositifs de mesures intégrant ces matériaux.
(iii) Evaluer ces dispositifs en présence de polluants, notamment sur banc.
Context :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Main objective:
This project aims to fabricate measurement devices and validate them, in conjunction with a post-doctoral researcher.

Main tasks:
Three main actions will be carried out:
(i) Manufacture materials
(ii) Manufacture measurement devices incorporating these materials.
(iii) Evaluate these devices in the presence of pollutants, notably on a bench.
Mots clés/Keywords
Capteurs, Détection optique, Environnement, Qualité de l'air
Sensors, Optical detection, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Impression 3D, Optique, Spectroscopie Aptitudes Professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air
R&D skills: Chemistry, 3D Printing, Optics, Spectroscopy Professional skills: Autonomy, Efficiency, Creativity, Communication, Writing Interests: Environment, Air quality
Matériaux colorés pour la qualité de l’air
Colored materials for air quality

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads See: [Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des matériaux de différentes couleurs, et à évaluer leurs capacités de détection.

Missions principales :
Deux actions principales seront à conduire au cours du stage :
(i) Fabriquer des matériaux par procédé Sol-Gel.
(ii) Evaluer la réactivité de ces matériaux vis-à-vis de polluants.
Background :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [See: Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Main objective :
The aim of this project is to manufacture materials in different colors, and to evaluate their detection capabilities.

Main tasks :
Two main actions will be carried out during the internship:
(i) Manufacture materials using the Sol-Gel process.
(ii) Evaluate the reactivity of these materials towards pollutants.
Mots clés/Keywords
Matériaux, Physico-chimie, Environnement, Qualité de l'air
Materials, Physical chemistry, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Physico-chimie, Optique, Spectroscopie Aptitudes professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air.
R&D skills: Chemistry, Physical chemistry, Optics, Spectroscopy Professional skills: Autonomy, Efficiency, Creativity, Communication, Interests: Environment, Air quality.
Matériaux formatés pour la qualité de l’air

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we develop compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [See : Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des matériaux de différents formats, et notamment avec des procédés microfluidiques. Les actions seront réalisées en lien avec un doctorant.

Missions principales :
Deux actions principales seront à conduire :
(i) Fabriquer des matériaux par procédé Sol-Gel.
(ii) Caractériser la structure et la fonction de ces matériaux.
Context :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [see: Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].

Main objective:
This project aims to fabricate materials of various formats, and in particular with microfluidic processes. Actions will be carried out in conjunction with a PhD student.

Main tasks:
Two main actions will be carried out:
(i) Fabricate materials using Sol-Gel processes.
(ii) Characterize the structure and function of these materials.
Mots clés/Keywords
Matériaux, Détection optique, Environnement, Qualité de l'air
Materials, Optical detection, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Microfluidique, Optique Aptitudes professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air
R&D skills: Chemistry, Microfluidics, Optics Professional skills: Autonomy, Efficiency, Creativity, Communication, Writing Interests: Environment, Air quality
Synthèse par CVD de nanoparticules de diamant à façon
CVD synthesis of tailored nanodiamonds

Spécialité

Chimie des matériaux

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30/04/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

GIRARD Hugues
+33 1 69 08 47 60

Résumé/Summary
Sujet détaillé/Full description
Les nanoparticules de diamant possèdent des propriétés chimiques, électroniques, thermiques et optiques exceptionnelles. Ces nanoparticules sont activement étudiées pour la nanomédecine, les applications énergétiques, les technologies quantiques et les lubrifiants et composites avancés [1-3]. Pour la plupart de ces applications, la qualité cristalline du noyau de diamant est essentielle et les particules les plus étudiées sont broyées à partir de diamant en vrac. Néanmoins, ces particules présentent une grande dispersion de taille, des anisotropies de forme et des concentrations variables d'impuretés chimiques. Ces aspects affectent fortement leurs propriétés. Il est donc nécessaire de développer une méthode de synthèse pour produire des nanodiamants hautement cristallins avec un contrôle précis de leur taille, de leur morphologie et des impuretés chimiques.

Ce stage de M2 vise à développer une synthèse "bottom-up" basée sur des supports sacrificiels (billes ou fibres de silice) sur lesquels des graines de diamant nanométriques seront attachées via des interactions électrostatiques. La croissance du diamant sera réalisée par l'exposition des gabarits ensemencés à un plasma CVD assisté par micro-ondes (MPCVD). Ce dispositif de croissance est déjà utilisé au CEA NIMBE pour la synthèse de coques de diamant [4]. Les paramètres de croissance seront ajustés pour sélectionner la taille, la forme et la concentration des impuretés chimiques (azote, bore) dans les nanodiamants. Après la croissance CVD, les nanoparticules seront collectées par dissolution des supports. Leur structure cristalline, leur morphologie et leur chimie de surface seront caractérisées au CEA NIMBE par microscopie électronique à balayage (MEB), diffraction des rayons X (DRX) et spectroscopies Raman, infrarouge (FTIR) et photoélectrons (XPS). Une collaboration externe permettra d'étudier la qualité cristalline du diamant et d'identifier les défauts structurels dans les nanodiamants cultivés par CVD par microscopie électronique à transmission à haute résolution (HR-TEM).

Plusieurs types de nanodiamants seront cultivés : d'abord des particules intrinsèques (sans dopage intentionnel), puis des particules dopées au bore. Les deux types de particules seront ensuite modifiés en surface pour obtenir une stabilité colloïdale dans l'eau.

Références :
[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9. [2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.
[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.
[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.
Diamond nanoparticles behave outstanding chemical, electronic, thermal and optical properties. Such nanoparticles are actively investigated for nanomedecine, energy applications, quantum technologies and advanced lubricants and composites [1-3]. For the major part of these applications, the crystalline quality of the diamond core is essential and the most studied particles are milled from bulk diamond. Nevertheless, these particles exhibit a wide size dispersion, shape anisotropies and variable concentrations of chemical impurities. These aspects strongly affect their properties. It is thus required to develop a synthesis method to grow highly crystalline nanodiamonds with an accurate control of their size, morphology and chemical impurities.

This M2 intership aims to develop a bottom-up synthesis based on sacrificial templates (silica beads or fibers) on which nanometric diamond seeds will be attached via electrostatic interactions. Diamond growth will be achieved by an exposure of the seeded templates to a micro-wave assisted CVD plasma (MPCVD). The growth set-up is already in use at CEA NIMBE for diamond core-shells synthesis [4]. Growth parameters will be adjusted to select the size, the shape and the concentration of chemical impurities (nitrogen, boron) in nanodiamonds. After CVD growth, nanoparticles will be collected by dissolution of the templates. Their crystalline structure, morphology and surface chemistry will be characterized at CEA NIMBE by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman, infra-red (FTIR) and photoelectrons (XPS) spectroscopies. An external collaboration will allow an investigation of the diamond crystalline quality and the identification of structural defects in CVD grown nanodiamonds by high-resolution transmission electron microscopy (HR-TEM).

Several kinds of nanodiamonds will be grown : first, intrinsic particles (without intentional doping), then boron doped particles. Both types of particles will be then surface modified to get a colloidal stability in water.

References:
[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9. [2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.
[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.
[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.
Mots clés/Keywords
Nanomatériaux, synthèse CVD
Nanomaterials, CVD synthesis
Compétences/Skills
MPCVD, MEB, TEM, DRX, Raman, FTIR, DLS, XPS
MPCVD, MEB, TEM, DRX, Raman, FTIR, DLS, XPS

 

Retour en haut