Oxide nanorods for solar water splitting obtained by aqueous chemical growth
logo_tutelle logo_tutelle 

In the framework of research on clean, secure and efficient energy, hydrogen production by solar water splitting is a very promising method. Overall efficiency of a solar water splitting process is directly related to local photo-electro-chemical reactions at the photo-electrodes-electrolyte interfaces that depend on the local environment defined by its morphology, chemical composition and electronic structure.

Since few years, we are interested by the hydrogen production by water splitting using oxide semiconductors as photo-anodes. Aqueous chemical growth (ACG) is used at SPEC / LNO to deposit nanostructured oxide films with thicknesses from tens to several hundreds of nm, it is more versatile and more appropriate for larger scale production.

 

Iron oxides as photoanodes

In a first step, we obtain oxy-hydroxide (FeOOH) as-grown films. In a second step, phase transition occurs by air annealing in order to obtain the useful hematite phase. From SEM images obtained on akaganeite (FeOOH) and hematite (α-Fe2O3) films obtained by ACG we observe that the films grow as well-organized nanorods. Theirs orientations (spread out in all directions or perpendicular to the substrate similar to “carpet”- like film) is strongly dependent on deposition parameters and on substrate nature.

 

 

Photo-electro-chemical activity of these films used as photoanodes was characterized on solar water splitting setup at SPEC/LNO that allows the measurement: a) of the photocurrent density as a function of the external bias applied on the electrochemical cell,  b) of the transient photocurrents evidenced by ON-OFF measurements and c) of the incident-photon-to-electron conversion efficiency (IPCE) as a function of the wavelength. (See below).

 
Oxide nanorods for solar water splitting obtained by aqueous chemical growth

SEM images on FeOOH and alpha-Fe2O3 films elaborated by ACG

Oxide nanorods for solar water splitting obtained by aqueous chemical growth

a) Photocurrent density vs. voltage for a Ti-doped hematite nanorods photoanode obtained by ACG. b) SEM image of carpet-like nanorods film. IPCE obtained at 1,2 V vs. RHE (c) and 1,6 V (d).

 


Internships:

- Victoria Villard, internship M1: Physique et Applications, UPMC: “Synthèse des photo-anodes en solution aqueuse”, CEA – Saclay / DRF / IRAMIS / SPEC - CNRS UMR 3680 / LNO, 2017

- Mekan Piriyev, M2: International Master Degree student in SERP+, Paris Saclay University: “Towards understanding the origin of the hematite photoanode optimization via Ti-doping for solar water splitting”, Synchrotron SOLEIL – CEA Saclay/DRF/IRAMIS/SPEC/LNO, 2019

- Sara Mahfouf, M2: Master Inorganic Chemistry, Paris Saclay University: “Graphite electrodes patterning decorated with hematite nanorods for solar water splitting liquid microcell fabrication”, Synchrotron SOLEIL – CEA Saclay/DRF/IRAMIS/SPEC/LNO, 2020

- Théo Alun, M1: Énergie renouvelables et efficacité énergétique, ESIEE Paris “Etude et optimisation des photoanodes nanostructurées d’hématite pour la production d’hydrogène par la photoélectrolyse de l’eau”, CEA – Saclay/DRF/IRAMIS/SPEC - CNRS UMR 3680/LNO, 2021

- Basile Bataillé, M2: Master PHYSMAN, PHYSico-chimie des MAtériaux pour le Nucléaire et les énergies nouvelles, Université Claude Bernard, Lyon, « Caractérisation des photoanodes à base d’hématite par microscopie électrochimique à balayage pour l’oxydation de l’eau », SPEC / ICMMO, mars-aout 2023 (financement IES et SPEC)

- Emma Gaury, M2: projet de fin d’étude, Ecole des Mines de Nancy, Université de Loraine, « Mesure de l’efficacité Faraday pour quantifier la production d’hydrogène par photoélectrolyse de l’eau », SOLEIL / SPEC, mars-aout 2023 (financement NanoSaclay, projet H2-re.SWSquant)


 

References:

  1. Scanning transmission X-ray spectromicroscopy: a nanotool to probe hematite nanorods for solar water splitting, Stefan Stanescu, Dana Stanescu, Adam Hitchcock
  2. Enhancement of the Solar Water Splitting Efficiency Mediated by Surface Segregation in Ti-doped Hematite Nanorods, Stanescu S, Alun T, Dappe YJ, Ihiawakrim D, Ersen O, Stanescu D.
  3. Characterizing surface states in hematite nanorod photoanodes, both beneficial and detrimental to solar water splitting efficiency, Dana Stanescu, Mekan Piriyev, Victoria Villard, Cristian Mocuta, Adrien Besson, Dris Ihiawakrim, Ovidiu Ersen, Jocelyne Leroy, Sorin G. Chiuzbaian, Adam P. Hitchcock, Stefan Stanescu, J. Mater. Chem. A, 2020, 8, 20513-20530, https://doi.org/10.1039/D0TA06524B; hal-02934466

Fundings :

ANR project OERKOP (2023-2027): “Oxygen evolution reaction: the key to optimize photocatalytic water oxidation” ; https://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast.php?t=projets&id_ast=3546

NanoSaclay projects (2021-2024):

- Faradaic efficiency measurement for a real quantification of H2 production by solar water splitting (H2re.SWSquant)

- Développement des photoanodes résistantes à la corrosion dans l’eau de mer pour une production d’hydrogène plus responsable (HYDROMER)

 


Contact CEA : Dana Stanescu from SPEC/LNO

 
#2977 - Màj : 03/08/2023


Retour en haut