PDF
Développements laser pour la physique attoseconde dans les cristaux semi-conducteurs.
Laser developments for attosecond physics in semiconducting crystals.

Spécialité

Interaction laser-matière

Niveau d'étude

Bac+4/5

Formation

Master 2

Unité d'accueil

Candidature avant le

29/05/2024

Durée

4 mois

Poursuite possible en thèse

oui

Contact

GAUTHIER David
+33 00 00 00 00 00

Résumé/Summary
L’objectif du stage est de modifier et d’optimiser les propriétés d’un laser femtoseconde afin d’étendre les capacités expérimentales du laboratoire sur l’étude des dynamiques attosecondes (1 attoseconde = 10^-18 seconde) lors de l’interaction laser-matière condensée, et notamment les mécanismes fondamentaux de la génération d’harmoniques d’ordre élevé dans les cristaux semi-conducteurs.
The objective of the internship is to modify and optimize the properties of a femtosecond laser in order to extend the laboratory's experimental capabilities on the study of attosecond (1 attosecond = 10^-18 second) dynamics during laser-matter interaction, and in particular the fundamental mechanisms of the generation of high order harmonics in semiconductor crystals.
Sujet détaillé/Full description
Lors de l’interaction entre des impulsions laser intenses et un cristal, l’excitation des électrons de valence vers les bandes de conduction et leur accélération par le champ laser conduit à l'émission de rayonnement jusqu'à la plage spectrale de l’extrême-UV. C’est la génération d'harmoniques d’ordre élevé dans les cristaux, une extension récente du mécanisme de génération d’harmoniques d’ordre élevé dans les gaz récompensé par le Prix Nobel de Physique 2023. L’analyse de l’émission du rayonnement harmonique sert d’outil pour étudier les mécanismes fondamentaux de l’interaction lumière-matière dans les milieux condensés.

Ce stage se déroulera sur l'installation NanoLight du CEA/LIDYL, équipée notamment d’un système laser par amplification paramétrique optique (OPCPA) intense, délivrant deux types d’impulsions laser de longueurs d’ondes centrales 1800 nanomètres (nm) et 2400 nm, et de durée entre 40 et 60 femtosecondes (fs). Le stage consistera à étendre les propriétés de cet OPCPA, et plus précisément à étudier et implémenter la génération d’impulsion dans l’infrarouge à 3600 nm de longueur d’onde centrale à partir du processus non-linéaire de mélange de fréquences des impulsions à 1800 et 2400 nm. La solution retenue est la génération par différence de fréquences entre le faisceau à 1800 nm et à 1200nm, ce dernier étant obtenu par doublage de la fréquence du faisceau à 2400nm. L’impulsion résultante à 3600 nm devra être ensuite caractérisée temporellement pour vérifier qu’elle conserve une durée temporelle inférieure à 100 fs.

En fonction de l’avancement et de la durée du stage, les développements laser ainsi réalisés seront utilisés par le candidat pour étudier la génération d’harmoniques d’ordre élevé. Il s’agit notamment d’utiliser les impulsions à 3600 nm pour étudier l’anisotropie d’émission harmonique dans des échantillons d’arséniure de galium et de germanium [1].

Le candidat devra avoir une bonne connaissance en optique non-linéaire et en optique ultra-rapide. Le stage se fera dans l’équipe Ultrafast NanoLight du groupe DICO (2 chercheurs permanents, 3 étudiants en thèse et 1-2 post-doctorants). Le candidat interagira fortement avec les membres de l’équipe pour assurer le bon déroulement du stage.

[1] https://iramis.cea.fr/LIDYL/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=3549
Mots clés/Keywords
Laser, Génération d'harmoniques d'ordre élevé
Laser, High-order harmonic generation
PDF
Preuve de concept du dosage in operando de H2O2 par photolyse éclair
Proof of Concept of in operando H2O2 analysis using flash photolysis

Spécialité

Interaction laser-matière

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

06/05/2024

Durée

5 mois

Poursuite possible en thèse

oui

Contact

BALDACCHINO Gérard
+33 1 69 08 57 02

Résumé/Summary
Le stage permettra d'adapter le processus de photolyse éclair de H2O2 à sa mesure in operando sous rayonnement ionisant. Pour la preuve de concept, il faudra déterminer le meilleur système chimique et le protocole pour analyser la teneur d'H2O2 formé au cours de la radiolyse de l'eau avec des ions lourds.
The internship will make it possible to adapt the process of flash photolysis of H2O2 to its measurement in operando under ionizing radiation. For the proof of concept, it will be necessary to determine the best chemical system and the protocol to analyze the concentration of H2O2 formed during the radiolysis of water with heavy ions.
Sujet détaillé/Full description
En chimie sous rayonnement, la formation de H2O2 lors de la radiolyse de l'eau avec des faisceaux d'ions (protons, alpha, ...) est mal connue. En effet, l'analyse de H2O2 se fait uniquement par une analyse post-mortem; c'est à dire, lorsque l'échantillon irradié est analysé au laboratoire, quelques minutes après. H2O2 est relativement stable, mais 1/il disparait par réaction pendant la radiolyse s'il n'est pas protégé des attaques du radical hydroxyle ou de l'électron hydraté; 2/il disparaît au contact de particules métalliques même présentes en impureté. Les mesures de formation de H2O2 sous faisceau de particule ionisante sont donc très complexes et souvent sujettes à controverse.
Comme H2O2 a la propriété d'être facilement photolysé avec une excitation laser dans l'UVA-B en donnant 2 radicaux hydroxyle, on peut utiliser la technique de photolyse éclair nanoseconde et la réactivité d'espèces comme Br-, Cl- ou même O2 pour mesurer la concentration de H2O2 au cours du temps, pendant que l'échantillon est irradié (in operando) : cela constitue une expérience à 3 faisceaux.
Le stage consistera donc à utiliser l'installation laser du LIDYL/DICO dédiée à la photolyse éclair nanoseconde et de tester/comparer différents systèmes chimiques pour paramétrer au mieux une expérience qui se fera in fine sous faisceau d'ions pulsé. Avant cela, l'expérience sera simulée avec un code déterministe de manière à tenir compte du processus complexe de la radiolyse de l'eau.
In radiation chemistry, the formation of H2O2 during the radiolysis of water with ion beams (protons, alpha, etc.) is poorly understood. Indeed, the analysis of H2O2 is only done by post-mortem analysis; meaning, when the irradiated sample is analyzed in the laboratory, a few minutes later. H2O2 is relatively stable, but 1/it disappears by reaction during radiolysis if it is not protected from attacks by the hydroxyl radical or the hydrated electron; 2/it disappears on contact with metallic particles/surface, even those present as impurities. Measurements of H2O2 formation under an ionizing particle beam are therefore very complex and often subject to controversy.
As H2O2 has the property of being easily photolyzed with laser excitation in UVA-B giving 2 hydroxyl radicals, we can use the nanosecond flash photolysis technique and the reactivity of species like Br-, Cl- or even O2 to measure the concentration of H2O2 over time, while the sample is being irradiated (in operando): this constitutes a 3-beam experiment.
The internship will therefore consist of using the LIDYL/DICO laser installation dedicated to nanosecond flash photolysis and testing/comparing different chemical systems to best configure an experiment which will ultimately be carried out under a pulsed ion beam. Before that, the experiment will be simulated with a deterministic code in order to take into account the complex process of water radiolysis.
Mots clés/Keywords
Physico-chimie, radiolyse de l'eau, spectroscopie ultra rapide, imulation déterministe
Physico-chemistry, water radiolysis, ultra fast spectroscopy, deterministic simulation
Compétences/Skills
Photolyse laser, photolyse éclair
Laser photolysis, flash photolysis
Logiciels
Office
PDF
Spectroscopie attoseconde de la photoémission ultrarapide des gaz et des liquides
Attosecond spectroscopy of ultrafast photoemission of gases and liquids

Spécialité

Interaction laser-matière

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

24/05/2024

Durée

4 mois

Poursuite possible en thèse

oui

Contact

SALIERES Pascal
+33 1 69 08 63 39

Résumé/Summary
L’objectif du stage est de produire des impulsions attosecondes à l’aide d’un nouveau laser Ytterbium de forte puissance, et de les utiliser pour étudier la dynamique ultrarapide de la photoémission des gaz et des liquides, en particulier, imager en temps réel l’éjection des paquets d’onde électronique.
The aim of the internship is to generate attosecond pulses using a new high-power Ytterbium laser and to use them to investigate the ultrafast photoemission dynamics of gases and liquids, in particular, to image in real time the ejection of electronic wavepackets.
Sujet détaillé/Full description
Ces dernières années, la génération et les applications des impulsions attosecondes (1 as=10−18 s) ont connu des progrès spectaculaires, récompensés par le Prix Nobel 2023 [1]. Ces impulsions ultrabrèves sont générées lors de la forte interaction non linéaire d’impulsions laser infrarouges brèves et intenses avec un jet de gaz [2]. Une nouvelle technologie laser à base d’Ytterbium émerge, qui promet des gains de puissance moyenne/cadence d’un à deux ordres de grandeur par rapport à la technologie actuelle Titane:Saphir. Ceci ouvre de nouvelles perspectives d’exploration de la matière à l’échelle de temps intrinsèque des électrons. La spectroscopie attoseconde permet ainsi d’étudier en temps réel le processus quantique de photoémission, de filmer en 3D l’éjection des paquets d’onde électronique [3,4], et d’étudier les effets de décohérence quantique dus notamment à l’intrication électron-ion.
Le travail expérimental comprendra la mise en œuvre d’un dispositif, installé sur la plateforme laser ATTOLab, permettant : i) la génération d’impulsions attosecondes à partir d’un nouveau laser Ytterbium; ii) leur caractérisation par interférométrie quantique ; iii) leur utilisation en spectroscopie de photoémission. L’étudiant-e sera formé-e en optique ultrarapide, physique atomique et moléculaire, optique quantique, et acquerra une bonne maitrise de la spectroscopie de particules chargées. La poursuite en thèse est souhaitée.
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
Recently, the generation and application of attosecond pulses (1 as=10−18 s) have made impressive progress, rewarded by this year’s Nobel Prize [1]. These ultrashort pulses are generated from the strong nonlinear interaction of short intense laser pulses with gas jets [2]. A new laser technology based on Ytterbium is promising increases in average power/reprate of more than one order of magnitude as compared to the current Titanium:Sapphire technology. This opens new prospects for the exploration of matter at the electron intrinsic timescale. Attosecond spectroscopy thus allows studying in real time the quantum process of photoemission, shooting the 3D movie of electronic wavepacket ejection [3,4], and studying quantum decoherence resulting from, e.g., electron-ion entanglement.
The experimental work will include the development and operation of a setup installed on the ATTOLab laser platform allowing: i) the generation of attosecond XUV pulses from a new Ytterbium laser, ii) their characterization using quantum interferometry, iii) their use in photoemission spectroscopy. The student will be trained in ultrafast optics, atomic and molecular physics, quantum optics and will acquire a good mastery of charged particle spectrometry. The continuation on a PhD project is advised.
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
Mots clés/Keywords
attoseconde, laser intense, photoémission
attosecond, intense laser, photoemission
Compétences/Skills
Spectroscopie de photons UVX Spectroscopie de particules chargées: électrons
XUV spectroscopy Charged-particle spectroscopy
Logiciels
Python, matlab


Retour en haut